Home / AP® Exam / AP® PreCalculus / AP® Precalculus

AP Precalculus -2.4 Exponential Function Manipulation- Study Notes - Effective Fall 2023

AP Precalculus -2.4 Exponential Function Manipulation- Study Notes – Effective Fall 2023

AP Precalculus -2.4 Exponential Function Manipulation- Study Notes – AP Precalculus- per latest AP Precalculus Syllabus.

LEARNING OBJECTIVE

Rewrite exponential expressions in equivalent forms.

Key Concepts: 

  • Product Property of Exponents and Exponential Transformations

  • Power Property of Exponents and Exponential Dilations

  • Negative Exponent Property

  • Exponential Unit Fractions and Roots

AP Precalculus -Concise Summary Notes- All Topics

Product Property of Exponents and Exponential Transformations

The product property for exponents states that when multiplying powers with the same base, the exponents are added.

\( \mathrm{ \displaystyle b^m \cdot b^n = b^{(m+n)} } \)

This algebraic property has an important graphical interpretation for exponential functions

Consider an exponential function with a horizontal translation:

\( \mathrm{ \displaystyle f(x) = b^{(x+k)} } \)

Using the product property, this expression can be rewritten as

\( \mathrm{ \displaystyle b^{(x+k)} = b^x \cdot b^k } \)

Let \( \mathrm{a = b^k} \). Then the function becomes

\( \mathrm{ \displaystyle f(x) = ab^x } \)

This shows that a horizontal translation of an exponential function is equivalent to a vertical dilation.

Key Insight

• Horizontal shifts of exponential functions can be rewritten as vertical scalings

• This equivalence is unique to exponential functions because of exponent rules

Example

Rewrite the function

\( \mathrm{ \displaystyle f(x) = 2^{(x+3)} } \)

in the form \( \mathrm{ab^x} \).

▶️ Answer/Explanation

Apply the product property:

\( \mathrm{ \displaystyle 2^{(x+3)} = 2^x \cdot 2^3 } \)

Simplify:

\( \mathrm{ \displaystyle 2^{(x+3)} = 8 \cdot 2^x } \)

Conclusion

A horizontal shift left by 3 units is equivalent to a vertical stretch by a factor of 8.

Example

Rewrite the function

\( \mathrm{ \displaystyle f(x) = 5^{(x-2)} } \)

as a vertical dilation of \( \mathrm{5^x} \).

▶️ Answer/Explanation

Use the product property:

\( \mathrm{ \displaystyle 5^{(x-2)} = 5^x \cdot 5^{-2} } \)

Evaluate \( \mathrm{5^{-2}} \):

\( \mathrm{ \displaystyle 5^{-2} = \dfrac{1}{25} } \)

So the function becomes

\( \mathrm{ \displaystyle f(x) = \dfrac{1}{25} \cdot 5^x } \)

Conclusion

A horizontal shift right by 2 units is equivalent to a vertical shrink by a factor of \( \mathrm{\dfrac{1}{25}} \).

Power Property of Exponents and Exponential Dilations

The power property for exponents states that when a power is raised to another power, the exponents are multiplied.

\( \mathrm{ \displaystyle (b^m)^n = b^{(mn)} } \)

This algebraic property has an important graphical interpretation for exponential functions.

Consider an exponential function that includes a horizontal dilation:

\( \mathrm{ \displaystyle f(x) = b^{cx} } \)

Using the power property, this expression can be rewritten as

\( \mathrm{ \displaystyle b^{cx} = (b^c)^x } \)

This shows that a horizontal dilation of an exponential function is equivalent to a change in the base of the exponential function.

Here, \( \mathrm{b^c} \) is a constant base, and \( \mathrm{c \ne 0} \).

Key Insight

• Horizontal dilations compress or stretch the graph along the x-axis

• This effect can be represented by changing the base of the exponential function

Example

Rewrite the function

\( \mathrm{ \displaystyle f(x) = 3^{2x} } \)

as an exponential function with a new base.

▶️ Answer/Explanation

Apply the power property:

\( \mathrm{ \displaystyle 3^{2x} = (3^2)^x } \)

Simplify the base:

\( \mathrm{ \displaystyle (3^2)^x = 9^x } \)

Conclusion

A horizontal compression by a factor of \( \mathrm{\tfrac{1}{2}} \) is equivalent to changing the base from 3 to 9.

Example

Rewrite the function

\( \mathrm{ \displaystyle f(x) = 4^{\tfrac{x}{2}} } \)

as a function of the form \( \mathrm{(b^c)^x} \).

▶️ Answer/Explanation

Rewrite the exponent:

\( \mathrm{ \displaystyle 4^{\tfrac{x}{2}} = (4^{\tfrac{1}{2}})^x } \)

Simplify the base:

\( \mathrm{ \displaystyle (4^{\tfrac{1}{2}})^x = 2^x } \)

Conclusion

A horizontal stretch by a factor of 2 is equivalent to changing the base from 4 to 2.

Negative Exponent Property

The negative exponent property explains how to interpret powers with negative exponents.

It states that for any nonzero base \( \mathrm{b} \),

\( \mathrm{ \displaystyle b^{-n} = \dfrac{1}{b^n} } \)

This property shows that a negative exponent represents the reciprocal of the corresponding positive power.

In the context of exponential functions, negative exponents often arise when analyzing behavior for negative input values or when rewriting expressions into equivalent forms.

This property is especially useful for understanding exponential decay and end behavior.

Example

Rewrite the expression

\( \mathrm{ \displaystyle 2^{-4} } \)

using a positive exponent.

▶️ Answer/Explanation

Apply the negative exponent property:

\( \mathrm{ \displaystyle 2^{-4} = \dfrac{1}{2^4} } \)

Simplify:

\( \mathrm{ \displaystyle \dfrac{1}{16} } \)

Conclusion

A negative exponent moves the base to the denominator.

Example

Rewrite the exponential function

\( \mathrm{ \displaystyle f(x) = 5^{-x} } \)

in an equivalent form with a positive exponent.

▶️ Answer/Explanation

Apply the negative exponent property:

\( \mathrm{ \displaystyle 5^{-x} = \dfrac{1}{5^x} } \)

This form highlights that the function represents exponential decay.

Conclusion

Negative exponents correspond to reciprocals and are commonly used to model decreasing exponential behavior.

Exponential Unit Fractions and Roots

An exponential unit fraction is an exponent of the form \( \mathrm{\tfrac{1}{k}} \), where \( \mathrm{k} \) is a natural number.

For a positive base \( \mathrm{b} \), the exponential expression

\( \mathrm{ \displaystyle b^{\tfrac{1}{k}} } \)

represents the kth root of \( \mathrm{b} \), when that root exists.

That is,

\( \mathrm{ \displaystyle b^{\tfrac{1}{k}} = \sqrt[k]{\,b\,} } \)

This definition is consistent with the laws of exponents, since

\( \mathrm{ \displaystyle \left(b^{\tfrac{1}{k}}\right)^k = b } \)

Exponents involving unit fractions allow exponential expressions to be interpreted using radicals and extend exponent rules beyond whole-number powers.

Example

Evaluate the expression

\( \mathrm{ \displaystyle 16^{\tfrac{1}{2}} } \)

▶️ Answer/Explanation

A power of \( \mathrm{\tfrac{1}{2}} \) represents a square root:

\( \mathrm{ \displaystyle 16^{\tfrac{1}{2}} = \sqrt{16} } \)

Evaluate:

\( \mathrm{ \displaystyle \sqrt{16} = 4 } \)

Conclusion

The value of \( \mathrm{16^{\tfrac{1}{2}}} \) is 4.

Example

Evaluate the expression

\( \mathrm{ \displaystyle 27^{\tfrac{1}{3}} } \)

▶️ Answer/Explanation

A power of \( \mathrm{\tfrac{1}{3}} \) represents a cube root:

\( \mathrm{ \displaystyle 27^{\tfrac{1}{3}} = \sqrt[3]{27} } \)

Evaluate:

\( \mathrm{ \displaystyle \sqrt[3]{27} = 3 } \)

Conclusion

The value of \( \mathrm{27^{\tfrac{1}{3}}} \) is 3.

Scroll to Top