Home / AP® Exam / AP® PreCalculus / AP® Precalculus

AP Precalculus -2.7 Composition of Functions- Study Notes - Effective Fall 2023

AP Precalculus -2.7 Composition of Functions- Study Notes – Effective Fall 2023

AP Precalculus -2.7 Composition of Functions- Study Notes – AP Precalculus- per latest AP Precalculus Syllabus.

LEARNING OBJECTIVE

Evaluate the composition of two or more functions for given values.
Construct a representation of the composition of two or more functions.
Rewrite a given function as a composition of two or more functions.

Key Concepts: 

  • Composite Functions and Domain Restrictions

  • Evaluating Composite Functions Using Multiple Representations

  • Non-Commutativity of Function Composition

  • The Identity Function and Function Composition

  • Using Function Composition to Relate Quantities

  • Constructing Analytic Representations of Composite Functions

  • Numerical and Graphical Representations of Composite Functions

  • Decomposing Functions into Simpler Functions

  • Additive Transformations as Function Composition

  • Multiplicative Transformations as Function Composition

AP Precalculus -Concise Summary Notes- All Topics

Composite Functions and Domain Restrictions

If \( \mathrm{f} \) and \( \mathrm{g} \) are functions, the composite function \( \mathrm{f \circ g} \) maps a set of input values to a set of output values by using the output of \( \mathrm{g} \) as the input of \( \mathrm{f} \).

The composite function is written as

\( \mathrm{ \displaystyle (f \circ g)(x) = f(g(x)) } \)

This notation emphasizes the order of operations: evaluate \( \mathrm{g(x)} \) first, then substitute the result into \( \mathrm{f} \).

Domain of a Composite Function

The domain of \( \mathrm{f \circ g} \) is restricted because:

• \( \mathrm{x} \) must be in the domain of \( \mathrm{g} \)

• \( \mathrm{g(x)} \) must be in the domain of \( \mathrm{f} \)

Therefore, the domain of \( \mathrm{f \circ g} \) consists of all input values of \( \mathrm{g} \) for which the corresponding output lies in the domain of \( \mathrm{f} \).

Example

Let

\( \mathrm{ \displaystyle g(x) = x – 1 } \)

\( \mathrm{ \displaystyle f(x) = \sqrt{x} } \)

Find \( \mathrm{(f \circ g)(x)} \) and its domain.

▶️ Answer/Explanation

Form the composite:

\( \mathrm{ \displaystyle (f \circ g)(x) = f(g(x)) = \sqrt{x – 1} } \)

For the square root to be defined, the input must be nonnegative:

\( \mathrm{ \displaystyle x – 1 \ge 0 \Rightarrow x \ge 1 } \)

Conclusion

\( \mathrm{(f \circ g)(x) = \sqrt{x – 1}} \) with domain \( \mathrm{x \ge 1} \).

Example

Let

\( \mathrm{ \displaystyle g(x) = \dfrac{1}{x} } \)

\( \mathrm{ \displaystyle f(x) = x^2 + 3 } \)

Find \( \mathrm{(f \circ g)(x)} \) and describe its domain.

▶️ Answer/Explanation

Form the composite:

\( \mathrm{ \displaystyle (f \circ g)(x) = f\!\left(\dfrac{1}{x}\right) = \left(\dfrac{1}{x}\right)^2 + 3 } \)

Simplify:

\( \mathrm{ \displaystyle (f \circ g)(x) = \dfrac{1}{x^2} + 3 } \)

The function \( \mathrm{g(x) = \tfrac{1}{x}} \) is undefined at \( \mathrm{x = 0} \).

Conclusion

\( \mathrm{(f \circ g)(x) = \dfrac{1}{x^2} + 3} \) with domain \( \mathrm{x \ne 0} \).

Evaluating Composite Functions Using Multiple Representations

Values of a composite function \( \mathrm{f \circ g} \) can be calculated or estimated by using the output values of \( \mathrm{g} \) as the input values of \( \mathrm{f} \).

The composite function is written as

\( \mathrm{ \displaystyle (f \circ g)(x) = f(g(x)) } \)

This process can be carried out using different representations of the functions:

Analytical: substitute expressions algebraically

Numerical: use tables of values

Graphical: read outputs from graphs

Verbal: follow descriptions of how quantities change

In every case, the key idea is the same: evaluate \( \mathrm{g} \) first, then apply \( \mathrm{f} \).

Example

Let

\( \mathrm{ \displaystyle g(x) = 2x + 1 } \)

\( \mathrm{ \displaystyle f(x) = x^2 } \)

Find \( \mathrm{(f \circ g)(3)} \).

▶️ Answer/Explanation

First evaluate \( \mathrm{g(3)} \):

\( \mathrm{ \displaystyle g(3) = 2(3) + 1 = 7 } \)

Then use this value as the input for \( \mathrm{f} \):

\( \mathrm{ \displaystyle f(7) = 7^2 = 49 } \)

Conclusion

\( \mathrm{(f \circ g)(3) = 49} \).

Example

A table shows values of a function \( \mathrm{g} \):

\( \mathrm{g(1) = 4,\; g(2) = 6} \)

A graph of \( \mathrm{f} \) shows that

\( \mathrm{f(4) = 10,\; f(6) = 18} \)

Estimate \( \mathrm{(f \circ g)(2)} \).

▶️ Answer/Explanation

From the table,

\( \mathrm{g(2) = 6} \)

Using the graph of \( \mathrm{f} \),

\( \mathrm{f(6) \approx 18} \)

Conclusion

\( \mathrm{(f \circ g)(2) \approx 18} \).

Non-Commutativity of Function Composition

The composition of functions is not commutative. This means that, in general, changing the order in which two functions are composed changes the result.

If \( \mathrm{f} \) and \( \mathrm{g} \) are functions, then

\( \mathrm{ \displaystyle (f \circ g)(x) = f(g(x)) } \)

and

\( \mathrm{ \displaystyle (g \circ f)(x) = g(f(x)) } \)

Because the output of the first function becomes the input of the second, reversing the order usually produces a different expression and different values.

As a result,

• \( \mathrm{(f \circ g)(x) \ne (g \circ f)(x)} \) in general

• \( \mathrm{f(g(x))} \) and \( \mathrm{g(f(x))} \) usually represent different values

This contrasts with addition and multiplication of numbers, which are commutative.

Example

Let

\( \mathrm{ \displaystyle f(x) = x + 3 } \)

\( \mathrm{ \displaystyle g(x) = 2x } \)

Find \( \mathrm{(f \circ g)(x)} \) and \( \mathrm{(g \circ f)(x)} \).

▶️ Answer/Explanation

Compute \( \mathrm{(f \circ g)(x)} \):

\( \mathrm{ \displaystyle f(g(x)) = f(2x) = 2x + 3 } \)

Compute \( \mathrm{(g \circ f)(x)} \):

\( \mathrm{ \displaystyle g(f(x)) = g(x + 3) = 2(x + 3) = 2x + 6 } \)

Conclusion

Since \( \mathrm{2x + 3 \ne 2x + 6} \), the compositions are different.

Example

Let

\( \mathrm{ \displaystyle f(x) = x^2 } \)

\( \mathrm{ \displaystyle g(x) = x – 1 } \)

Evaluate \( \mathrm{(f \circ g)(2)} \) and \( \mathrm{(g \circ f)(2)} \).

▶️ Answer/Explanation

First, compute \( \mathrm{(f \circ g)(2)} \):

\( \mathrm{ \displaystyle g(2) = 1 } \)

\( \mathrm{ \displaystyle f(1) = 1 } \)

So \( \mathrm{(f \circ g)(2) = 1} \).

Now compute \( \mathrm{(g \circ f)(2)} \):

\( \mathrm{ \displaystyle f(2) = 4 } \)

\( \mathrm{ \displaystyle g(4) = 3 } \)

Conclusion

Since \( \mathrm{1 \ne 3} \), the two compositions produce different values.

The Identity Function and Function Composition

The function defined by 

\( \mathrm{ \displaystyle f(x) = x } \)

is called the identity function.

When the identity function is composed with any function \( \mathrm{g} \), the resulting composite function is unchanged:

\( \mathrm{ \displaystyle g(f(x)) = g(x) } \)

\( \mathrm{ \displaystyle f(g(x)) = g(x) } \)

Thus, composing any function with the identity function leaves the function exactly the same.

The identity function plays a special role in composition, similar to how:

• 0 is the additive identity, since \( \mathrm{x + 0 = x} \)

• 1 is the multiplicative identity, since \( \mathrm{x \cdot 1 = x} \)

Likewise, the identity function is the identity element for function composition.

Example

Let

\( \mathrm{ \displaystyle g(x) = 3x – 5 } \)

Verify that composing \( \mathrm{g} \) with the identity function leaves \( \mathrm{g} \) unchanged.

▶️ Answer/Explanation

Using \( \mathrm{f(x) = x} \):

\( \mathrm{ \displaystyle g(f(x)) = g(x) = 3x – 5 } \)

\( \mathrm{ \displaystyle f(g(x)) = g(x) = 3x – 5 } \)

Conclusion

Composing with the identity function does not change the function.

Example

Let

\( \mathrm{ \displaystyle g(x) = x^2 + 1 } \)

Evaluate both compositions with the identity function.

▶️ Answer/Explanation

\( \mathrm{ \displaystyle g(f(x)) = g(x) = x^2 + 1 } \)

\( \mathrm{ \displaystyle f(g(x)) = g(x) = x^2 + 1 } \)

Conclusion

The identity function behaves like a “do nothing” operation in composition.

Using Function Composition to Relate Quantities

Function composition is especially useful when two quantities are not directly related by a single formula but are instead connected through one or more intermediate quantities.

If one quantity depends on a second quantity, and the second quantity depends on a third, then composition allows us to build a model that directly relates the first and third quantities.

Mathematically, if

\( \mathrm{ \displaystyle y = g(x) } \)

and

\( \mathrm{ \displaystyle z = f(y) } \)

then composition produces a direct relationship between \( \mathrm{x} \) and \( \mathrm{z} \):

\( \mathrm{ \displaystyle z = (f \circ g)(x) = f(g(x)) } \)

This approach is common in contextual problems involving unit conversions, multi-step processes, and applied modeling.

Example

A factory produces metal rods. The length of a rod depends on the time the machine runs, and the mass of the rod depends on its length.

The relationships are:

\( \mathrm{ \displaystyle L(t) = 4t } \) (length in cm after \( \mathrm{t} \) minutes)

\( \mathrm{ \displaystyle M(L) = 0.8L } \) (mass in grams from length)

Find a function that directly relates mass to time.

▶️ Answer/Explanation

Compose \( \mathrm{M} \) with \( \mathrm{L} \):

\( \mathrm{ \displaystyle (M \circ L)(t) = M(L(t)) = 0.8(4t) } \)

\( \mathrm{ \displaystyle (M \circ L)(t) = 3.2t } \)

Conclusion

The mass of the rod is directly related to time by \( \mathrm{M(t) = 3.2t} \).

Example

The temperature in Celsius depends on the temperature in Fahrenheit, and the pressure of a gas depends on the temperature in Celsius.

The relationships are:

\( \mathrm{ \displaystyle C(F) = \dfrac{5}{9}(F – 32) } \)

\( \mathrm{ \displaystyle P(C) = 2C + 100 } \)

Find a function that gives pressure directly in terms of Fahrenheit temperature.

▶️ Answer/Explanation

Compose \( \mathrm{P} \) with \( \mathrm{C} \):

\( \mathrm{ \displaystyle (P \circ C)(F) = 2\!\left(\dfrac{5}{9}(F – 32)\right) + 100 } \)

This expression directly relates pressure to Fahrenheit temperature.

Conclusion

Function composition allows quantities to be related even when no single direct formula is initially available.

Constructing Analytic Representations of Composite Functions

When analytic representations of the functions \( \mathrm{f} \) and \( \mathrm{g} \) are available, an analytic representation of the composite function \( \mathrm{f(g(x))} \) can be constructed by substituting \( \mathrm{g(x)} \) for every instance of \( \mathrm{x} \) in \( \mathrm{f} \).

This process directly reflects the definition of composition:

\( \mathrm{ \displaystyle (f \circ g)(x) = f(g(x)) } \)

Algebraic substitution is used to combine the two function rules into a single expression.

Procedure

• Write the formula for \( \mathrm{f(x)} \)

• Replace every \( \mathrm{x} \) in \( \mathrm{f} \) with \( \mathrm{g(x)} \)

• Simplify the resulting expression

Example

Let

\( \mathrm{ \displaystyle f(x) = x^2 + 1 } \)

\( \mathrm{ \displaystyle g(x) = 3x – 4 } \)

Find an analytic representation of \( \mathrm{(f \circ g)(x)} \).

▶️ Answer/Explanation

Substitute \( \mathrm{g(x)} \) into \( \mathrm{f} \):

\( \mathrm{ \displaystyle (f \circ g)(x) = f(3x – 4) } \)

\( \mathrm{ \displaystyle (f \circ g)(x) = (3x – 4)^2 + 1 } \)

Simplify:

\( \mathrm{ \displaystyle (f \circ g)(x) = 9x^2 – 24x + 16 + 1 } \)

\( \mathrm{ \displaystyle (f \circ g)(x) = 9x^2 – 24x + 17 } \)

Conclusion

The analytic form of the composite function is \( \mathrm{(f \circ g)(x) = 9x^2 – 24x + 17} \).

Example

Let

\( \mathrm{ \displaystyle f(x) = \sqrt{x} } \)

\( \mathrm{ \displaystyle g(x) = x + 5 } \)

Write an analytic representation of \( \mathrm{(f \circ g)(x)} \) and state its domain.

▶️ Answer/Explanation

\( \mathrm{ \displaystyle (f \circ g)(x) = \sqrt{x + 5} } \)

For the square root to be defined:

\( \mathrm{ \displaystyle x + 5 \ge 0 \Rightarrow x \ge -5 } \)

Conclusion

The composite function is defined for \( \mathrm{x \ge -5} \).

Numerical and Graphical Representations of Composite Functions

A numerical or graphical representation of a composite function \( \mathrm{f \circ g} \) can often be constructed by calculating or estimating ordered pairs of the form

\( \mathrm{ \displaystyle (x,\; f(g(x))) } \)

This process follows the definition of composition: for each input value \( \mathrm{x} \), the value of \( \mathrm{g(x)} \) is found first, and that output is then used as the input to \( \mathrm{f} \).

By repeating this process for several input values, a table of values can be created. Plotting these points produces a graphical representation of the composite function.

This approach is especially useful when:

• the functions are given by tables or graphs rather than formulas

• exact algebraic expressions are difficult to obtain

Example

The table below gives values of \( \mathrm{g} \) and \( \mathrm{f} \):

\( \mathrm{ g(1)=2,\; g(2)=4,\; g(3)=5 } \)

\( \mathrm{ f(2)=6,\; f(4)=12,\; f(5)=15 } \)

Construct a numerical representation of \( \mathrm{(f \circ g)} \).

▶️ Answer/Explanation

Evaluate \( \mathrm{f(g(x))} \) for each input:

\( \mathrm{(f \circ g)(1)=f(2)=6} \)

\( \mathrm{(f \circ g)(2)=f(4)=12} \)

\( \mathrm{(f \circ g)(3)=f(5)=15} \)

Conclusion

The composite function includes the points \( \mathrm{(1,6),\; (2,12),\; (3,15)} \).

Example

The graph of \( \mathrm{g} \) shows that \( \mathrm{g(0)=1} \) and \( \mathrm{g(2)=3} \).

The graph of \( \mathrm{f} \) shows that \( \mathrm{f(1)=4} \) and \( \mathrm{f(3)=10} \).

Estimate values of \( \mathrm{(f \circ g)} \).

▶️ Answer/Explanation

Using the graphs:

\( \mathrm{(f \circ g)(0)=f(1)=4} \)

\( \mathrm{(f \circ g)(2)=f(3)=10} \)

Conclusion

The composite function includes approximate points \( \mathrm{(0,4)} \) and \( \mathrm{(2,10)} \), which can be plotted to form its graph.

Decomposing Functions into Simpler Functions

Functions given analytically can often be expressed as the composition of two or more simpler functions. This process is called function decomposition.

If a function can be written in the form

\( \mathrm{ \displaystyle h(x) = f(g(x)) } \)

then the function \( \mathrm{h} \) has been decomposed into two functions \( \mathrm{g} \) (the inner function) and \( \mathrm{f} \) (the outer function).

When a function is properly decomposed, the variable in the outer function replaces every instance of the inner function. That is, the output of the inner function becomes the input of the outer function.

Decomposition is useful for:

• understanding the structure of complex functions

• analyzing transformations

• identifying domain restrictions

Example

Decompose the function

\( \mathrm{ \displaystyle h(x) = (3x – 2)^2 } \)

▶️ Answer/Explanation

Identify the inner expression:

\( \mathrm{ \displaystyle g(x) = 3x – 2 } \)

Identify the outer operation:

\( \mathrm{ \displaystyle f(x) = x^2 } \)

Write the composition:

\( \mathrm{ \displaystyle h(x) = f(g(x)) } \)

Conclusion

The function is the square of the linear function \( \mathrm{3x – 2} \).

Example

Decompose the function

\( \mathrm{ \displaystyle h(x) = \sqrt{5x + 1} } \)

▶️ Answer/Explanation

Choose the inner function as the expression inside the square root:

\( \mathrm{ \displaystyle g(x) = 5x + 1 } \)

Choose the outer function as the square root:

\( \mathrm{ \displaystyle f(x) = \sqrt{x} } \)

Write the composition:

\( \mathrm{ \displaystyle h(x) = f(g(x)) } \)

Conclusion

The square root function is applied to the linear function \( \mathrm{5x + 1} \).

Additive Transformations as Function Composition

An additive transformation of a function \( \mathrm{f} \) that produces vertical or horizontal translations can be understood using function composition.

Consider the function

\( \mathrm{ \displaystyle g(x) = x + k } \)

where \( \mathrm{k} \) is a real number.

When this function is composed with \( \mathrm{f} \), it results in a horizontal translation:

\( \mathrm{ \displaystyle (f \circ g)(x) = f(x + k) } \)

This shifts the graph of \( \mathrm{f} \) left by \( \mathrm{k} \) units if \( \mathrm{k > 0} \), and right by \( \mathrm{|k|} \) units if \( \mathrm{k < 0} \).

A vertical translation occurs when a constant is added to the output of the function:

\( \mathrm{ \displaystyle f(x) + k } \)

Thus, additive transformations can be interpreted through composition and direct addition, providing a structured way to analyze graph shifts.

Example

Let

\( \mathrm{ \displaystyle f(x) = x^2 } \)

Describe the transformation represented by

\( \mathrm{ \displaystyle f(x + 3) } \)

▶️ Answer/Explanation

Here, \( \mathrm{g(x) = x + 3} \).

The composite function is

\( \mathrm{ \displaystyle (f \circ g)(x) = f(x + 3) } \)

Conclusion

The graph of \( \mathrm{f(x) = x^2} \) is shifted 3 units to the left.

Example

Let

\( \mathrm{ \displaystyle f(x) = \sqrt{x} } \)

Describe the transformation represented by

\( \mathrm{ \displaystyle f(x – 2) + 4 } \)

▶️ Answer/Explanation

The expression \( \mathrm{f(x – 2)} \) represents a horizontal shift.

Since \( \mathrm{x – 2 = x + (-2)} \), the graph shifts 2 units to the right.

The \( \mathrm{+4} \) outside the function causes a vertical shift upward by 4 units.

Conclusion

The graph of \( \mathrm{f(x)} \) is shifted right 2 units and up 4 units.

Multiplicative Transformations as Function Composition

A multiplicative transformation of a function \( \mathrm{f} \) that produces vertical or horizontal dilations can be understood using function composition.

Consider the function

\( \mathrm{ \displaystyle g(x) = kx } \)

where \( \mathrm{k \ne 0} \) is a real number.

When this function is composed with \( \mathrm{f} \), it results in a horizontal dilation:

\( \mathrm{ \displaystyle (f \circ g)(x) = f(kx) } \)

The graph of \( \mathrm{f(x)} \) is horizontally scaled by a factor of

\( \mathrm{ \displaystyle \left| \dfrac{1}{k} \right| } \)

If \( \mathrm{|k| > 1} \), the graph is compressed horizontally. If \( \mathrm{0 < |k| < 1} \), the graph is stretched horizontally.

If \( \mathrm{k < 0} \), the transformation also includes a reflection across the y-axis.

A vertical dilation occurs when the output of the function is multiplied by a constant:

\( \mathrm{ \displaystyle kf(x) } \)

If \( \mathrm{|k| > 1} \), the graph is stretched vertically. If \( \mathrm{0 < |k| < 1} \), the graph is compressed vertically. If \( \mathrm{k < 0} \), the graph is reflected across the x-axis.

Thus, multiplicative transformations can be interpreted through composition with \( \mathrm{g(x)=kx} \) and multiplication of function outputs.

Example

Let

\( \mathrm{ \displaystyle f(x) = x^2 } \)

Describe the transformation represented by

\( \mathrm{ \displaystyle f(2x) } \)

▶️ Answer/Explanation

Here, \( \mathrm{g(x)=2x} \).

The composite function is

\( \mathrm{ \displaystyle (f \circ g)(x) = f(2x) } \)

Conclusion

The graph of \( \mathrm{f(x)} \) is horizontally compressed by a factor of \( \mathrm{\tfrac{1}{2}} \).

Example

Let

\( \mathrm{ \displaystyle f(x) = \sqrt{x} } \)

Describe the transformation represented by

\( \mathrm{ \displaystyle 3f(x) } \)

▶️ Answer/Explanation

The expression multiplies all output values by 3.

This results in a vertical stretch by a factor of 3.

Conclusion

The graph of \( \mathrm{f(x)} \) is stretched vertically.

Scroll to Top