AP Precalculus -3.3 Sine and Cosine Values- MCQ Exam Style Questions - Effective Fall 2023
AP Precalculus -3.3 Sine and Cosine Values- MCQ Exam Style Questions – Effective Fall 2023
AP Precalculus -3.3 Sine and Cosine Values- MCQ Exam Style Questions – AP Precalculus- per latest AP Precalculus Syllabus.
Question
(B) \( \theta = \frac{5\pi}{3} \) and \( r = 20 \)
(C) \( \theta = \frac{11\pi}{6} \) and \( r = 10 \)
(D) \( \theta = \frac{11\pi}{6} \) and \( r = 20 \)
▶️ Answer/Explanation
We have \( x = 10, y = -10\sqrt{3} \).
The ratio \( \frac{y}{x} = -\sqrt{3} \), so \( \tan\theta = -\sqrt{3} \).
In Quadrant IV, \( \theta = \frac{5\pi}{3} \) (since \(\tan\frac{5\pi}{3} = -\sqrt{3}\)).
Check: \( \cos\frac{5\pi}{3} = \frac12 \), \( \sin\frac{5\pi}{3} = -\frac{\sqrt{3}}{2} \).
Now, \( r\cos\theta = r \cdot \frac12 = 10 \) → \( r = 20 \).
Verify: \( r\sin\theta = 20 \cdot \left(-\frac{\sqrt{3}}{2}\right) = -10\sqrt{3} \),
Thus \( \theta = \frac{5\pi}{3} \) and \( r = 20 \).
✅ Answer: (B)
Question
(B) \(g(\omega) > g(\theta)\)
(C) \(g(\omega) = g(\theta)\)
(D) Depending on the value of \(\omega\), sometimes \(g(\omega) < g(\theta)\) and sometimes \(g(\omega) > g(\theta)\).
▶️ Answer/Explanation
On the unit circle, \( \cos z \) gives the \( x \)-coordinate.
From the diagram, \( \theta \) is in Quadrant I (\( 0 < \theta < \frac{\pi}{2} \)) since \( P \) is in Quadrant I.
If \( \theta < \omega < \pi \), then \( \omega \) is in Quadrant II.
Cosine decreases from 1 to -1 as the angle goes from 0 to \( \pi \), so for \( \omega > \theta \), \( \cos\omega < \cos\theta \).
Thus \( g(\omega) < g(\theta) \).
✅ Answer: (A)
Question
(B) \(f(\beta) > f(\theta)\)
(C) \(f(\beta) = f(\theta)\)
(D) Depending on the value of \(\beta\), sometimes \(f(\beta) < f(\theta)\) and sometimes \(f(\beta) > f(\theta)\).
▶️ Answer/Explanation
From the diagram, \( \theta \) is in Quadrant I and \( \theta > \frac{\pi}{2} \) ? Actually given \( \frac{\pi}{2} < \beta < \theta \), so \( \theta \) is > \( \frac{\pi}{2} \) as well, but since \( \theta \) is in Quadrant II from the figure (based on answer key reasoning). In Quadrant II, sine decreases as angle increases toward \( \pi \).
If \( \frac{\pi}{2} < \beta < \theta \), then \( \beta \) is closer to \( \frac{\pi}{2} \) where sine = 1, and \( \theta \) is farther from \( \frac{\pi}{2} \) so sine is smaller. Thus \( \sin\beta > \sin\theta \), so \( f(\beta) > f(\theta) \).
✅ Answer: (B)
Question
(B) \(-\frac{\sqrt{3}}{2}\)
(C) \(\frac{1}{2}\)
(D) 5
▶️ Answer/Explanation
Step 1: Geometry of the triangle
Triangle \(ABO\) is equilateral with side length \(10\).
Hence,
\(OA = OB = AB = 10\)
and
\(\angle AOB = 60^\circ.\)
Step 2: Orientation in the coordinate plane
Segment \(AB\) is perpendicular to the \(x\)-axis, so \(A\) and \(B\) have the same
\(x\)-coordinate and are symmetric about the \(x\)-axis.
Thus, the bisector of \(\angle AOB\) lies along the negative \(x\)-axis.
Step 3: Determine the angle \(\theta\)
Since \(\angle AOB = 60^\circ\), the ray \(OB\) makes an angle of
\(\theta = 180^\circ – 30^\circ = 150^\circ\)
with the positive \(x\)-axis.
Step 4: Compute \(10\sin\theta\)
\(\sin 150^\circ = \frac{1}{2}\)
\(10\sin\theta = 10 \cdot \frac{1}{2} = 5\)
\(\boxed{5}\)
\textbf{Correct answer: (D)}
Question
(B) \( \sin\theta = \frac{x}{5} \), ratio of horizontal displacement of \(R\) to distance from origin
(C) \( \sin\theta = -\frac{y}{5} \), ratio of vertical displacement of \(R\) to distance from origin
(D) \( \sin\theta = \frac{y}{5} \), ratio of vertical displacement of \(P\) to distance from origin
▶️ Answer/Explanation
By definition on the unit circle (scaled by radius 5):
\( \sin\theta = \frac{\text{vertical displacement of }P}{ \text{distance from origin}} = \frac{y}{5} \).
✅ Answer: (D)
Question
(B) \( \frac{\sqrt{2} + \sqrt{6}}{4} \)
(C) \( \frac{\sqrt{2} – \sqrt{6}}{4} \)
(D) \( \frac{\sqrt{6} – \sqrt{2}}{4} \)
▶️ Answer/Explanation
Use sum identity: \( \sin\left(\frac{3\pi}{4} + \frac{4\pi}{3}\right) = \sin\frac{3\pi}{4}\cos\frac{4\pi}{3} + \cos\frac{3\pi}{4}\sin\frac{4\pi}{3} \).
\( \sin\frac{3\pi}{4} = \frac{\sqrt{2}}{2} \), \( \cos\frac{4\pi}{3} = -\frac{1}{2} \), \( \cos\frac{3\pi}{4} = -\frac{\sqrt{2}}{2} \), \( \sin\frac{4\pi}{3} = -\frac{\sqrt{3}}{2} \).
Compute: \( \frac{\sqrt{2}}{2} \cdot -\frac{1}{2} + \left(-\frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{6} – \sqrt{2}}{4} \).
✅ Answer: (D)
Question
▶️ Answer/Explanation
Sine is vertical displacement / radius.
From the figure (described in PDF), the vertical coordinate is 4.3.
Thus \( \sin\alpha = \frac{4.3}{4.8} \).
✅ Answer: (B)
