AP Precalculus -3.7 Sinusoidal Modeling- MCQ Exam Style Questions - Effective Fall 2023
AP Precalculus -3.7 Sinusoidal Modeling- MCQ Exam Style Questions – Effective Fall 2023
AP Precalculus -3.7 Sinusoidal Modeling- MCQ Exam Style Questions – AP Precalculus- per latest AP Precalculus Syllabus.
Question
(B) \(\cos(\pi x) + 4\)
(C) \(2\cos\left(\frac{\pi}{2}x\right) + 4\)
(D) \(2\cos(\pi x) + 4\)
▶️ Answer/Explanation
From the table:
Max value \(y=5\) at \(x=0,4\) (multiples of 4)
Min value \(y=3\) at \(x=2\)
Midline: \( \frac{5+3}{2} = 4 \)
Amplitude: \( \frac{5-3}{2} = 1 \)
Period = 4 → \( \frac{2\pi}{b} = 4 \) → \( b = \frac{\pi}{2} \)
Using cosine with max at \(x=0\): \( f(x) = 1\cdot \cos\left(\frac{\pi}{2}x\right) + 4 \)
✅ Answer: (A)
Question
(B) The value of \( c \) is \( 2 \) because this accounts for a vertical shift that aligns a minimum value of the data set with a minimum value of \( F \).
(C) The value of \( c \) is \( 14 \) because this accounts for a phase shift that aligns a maximum value of the data set with a maximum value of \( F \).
(D) The value of \( c \) is \( 14 \) because this accounts for a vertical shift that aligns a maximum value of the data set with a maximum value of \( F \).
▶️ Answer/Explanation
Step 1: Identify key features of the data
From the table, the maximum temperature is \(38^\circ\mathrm{F}\) at \(t = 14\),
and the minimum temperature is \(22^\circ\mathrm{F}\) at \(t = 2\).
Step 2: Interpret the sinusoidal model
The model is \(F(t) = 8\cos\left(\dfrac{\pi}{12}(t + c)\right) + 30\).
The amplitude is \(8\), the midline is \(30\), and the period is
\(\dfrac{2\pi}{\pi/12} = 24\) hours, which matches a daily temperature cycle.
Step 3: Use the cosine maximum
A cosine function reaches its maximum when its argument is \(0\).
Thus, the maximum of \(F\) occurs when
\(\dfrac{\pi}{12}(t + c) = 0\), which gives \(t + c = 0\).
Step 4: Align the maximum of the model with the data
The data show a maximum temperature at \(t = 14\).
Substituting gives \(14 + c = 0\), so \(c = -14\).
Since cosine is periodic, a phase shift of \(-14\) is equivalent to \(14\).
Thus, \(c = 14\).
Step 5: Interpret the meaning of \(c\)
The constant \(c\) appears inside the cosine function, so it represents a
phase shift. The value \(c = 14\) aligns a maximum of the model with a
maximum of the data.
\(\boxed{\text{Correct answer: (C)}}\)
Question
| Time \( t \) (seconds) | Displacement (cm) |
| 0 | 2.5 |
| 1/24 | –2.5 |
(B) \( 2.5 \cos\left(\frac{\pi}{6}t\right) \)
(C) \( 2.5 \cos(24\pi t) \)
(D) \( 2.5 \cos(48\pi t) \)
▶️ Answer/Explanation
From the table: at \( t = 0 \), displacement = \( 2.5 \) cm (maximum); at \( t = \frac{1}{24} \) s, displacement = \( -2.5 \) cm (minimum).
Amplitude \( A = \frac{2.5 – (-2.5)}{2} = 2.5 \) cm.
The time from a maximum to the next minimum is half the period, so \( T/2 = \frac{1}{24} \) ⇒ \( T = \frac{1}{12} \) seconds.
For \( d(t) = A\cos(bt) \), the period is \( T = \frac{2\pi}{b} \).
Set \( \frac{2\pi}{b} = \frac{1}{12} \) ⇒ \( b = 24\pi \).
Thus \( d(t) = 2.5\cos(24\pi t) \), which matches choice (C).
✅ Answer: (C)
Question
(B) \( 4.44 \sin(b(x + c)) + d \)
(C) \( 4.71 \sin(b(x + c)) + d \)
(D) \( 8.34 \sin(b(x + c)) + d \)
▶️ Answer/Explanation
Amplitude \( a \) is half the difference between the maximum and minimum:
\( a = \frac{8.88 – 0.54}{2} = \frac{8.34}{2} = 4.17 \).
Thus the function is \( f(x) = 4.17 \sin(b(x + c)) + d \).
✅ Answer: (A)
Question
| Month \(\theta\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| Temp (°C) | 6.1 | -5.5 | -6.0 | 10.0 | 17.2 | 25.6 | 30.6 | 32.2 | 26.1 |
(B) 13
(C) 19
(D) 38
▶️ Answer/Explanation
The parameter \( d \) represents the vertical shift (midline) of the sinusoidal model, which is the average of the maximum and minimum temperatures in the data.
Maximum temperature = 32.2°C, Minimum temperature = -6.0°C.
Midline \( d = \frac{32.2 + (-6.0)}{2} = \frac{26.2}{2} = 13.1 \approx 13 \).
✅ Answer: (B)
Question
▶️ Answer/Explanation
Ground level corresponds to \( h(t) = 0 \).
The minimum of \( h(t) \) occurs when \( \cos\left(\frac{\pi}{3}t\right) = -1 \), giving \( h_{\min} = 6 + 6(-1) = 0 \).
Thus \( P \) touches ground once per period when \(\cos = -1\).
Period \( T = \frac{2\pi}{\pi/3} = 6 \) seconds.
Number of periods in 300 seconds: \( \frac{300}{6} = 50 \).
So \( P \) touches ground 50 times.
✅ Answer: (B)
Question
Part of a video game design involves the use of one period of a sinusoidal function as the path that a spaceship will follow across a rectangular video screen. The video screen has a width of 1000 pixels and a height of 600 pixels. The values \( x = 0 \) and \( x = 1000 \) represent the left and right sides of the screen, respectively. The values \( y = 0 \) and \( y = 600 \) represent the bottom and top sides of the screen, respectively.
The path of the spaceship begins on the left side of the screen, \( x = 0 \), and completes one period of a sinusoidal function by ending on the right side of the screen, \( x = 1000 \). During its path, the spaceship reaches its minimum height of \( y = 200 \) before reaching its maximum height of \( y = 500 \). If \( y = f(x) \) models the path of the spaceship, which of the following could define \( f(x) \)?
(B) \(-150 \sin \left( \frac{\pi}{500} x \right) + 350\)
(C) \( 150 \sin \left( \frac{\pi}{500} x \right) + 350\)
(D) \( 300 \sin \left( \frac{\pi}{500} x \right) + 350\)
▶️ Answer/Explanation
Midline: \( \frac{500 + 200}{2} = 350 \).
Amplitude: \( \frac{500 – 200}{2} = 150 \).
Period = 1000 ⇒ \( \frac{2\pi}{b} = 1000 \) ⇒ \( b = \frac{\pi}{500} \).
Since the ship hits the minimum before the maximum, the sine wave is inverted relative to \( \sin x \) (which goes from 0 up to max first).
So we use \( -A \sin(bx) + k \).
Thus \( f(x) = -150 \sin\left( \frac{\pi}{500} x \right) + 350 \).
✅ Answer: (B)
