AP Statistics 5.2 The Normal Distribution, Revisited - MCQs - Exam Style Questions
Question
(B) \(0.123\)
(C) \(0.134\)
(D) \(0.618\)
(E) \(0.923\)
▶️ Answer/Explanation
Let \(X\sim \mathcal N(80,7)\) be hours worked. “Top \(20\%\)” cutoff is the \(80^\text{th}\) percentile \(c\) where \(P(X>c)=0.20\Rightarrow P(X<c)=0.80\).
Using technology/tables, \(c\approx 85.89\) hours (since \(z_{0.80}\approx 0.8416\) and \(80+0.8416\times 7\approx 85.89\)).
We want \(P(\text{merit}\mid X<90)=P(X>85.89\mid X<90)=\dfrac{P(85.89<X<90)}{P(X<90)}\).
Convert bounds to \(z\)-scores: \(z_1=\dfrac{85.89-80}{7}\approx 0.841\), \(z_2=\dfrac{90-80}{7}\approx 1.429\).
From normal CDF values: \(\Phi(z_1)\approx 0.800\), \(\Phi(z_2)\approx 0.923\).
Then \(P(85.89<X<90)=\Phi(z_2)-\Phi(z_1)\approx 0.923-0.800=0.123\).
And \(P(X<90)=\Phi(z_2)\approx 0.923\).
Therefore \[ P(\text{merit}\mid X<90)=\frac{0.123}{0.923}\approx 0.134. \] ✅ Answer: (C)
Question
(B) 0.31
(C) 0.34
(D) 0.37
(E) 0.50
▶️ Answer/Explanation
1. Find the Standard Deviation ($\sigma$):
We are given $\mu = 84.07$ and $P(X \ge 100) = 0.064$. The area to the left of 100 is $P(X < 100) = 1 – 0.064 = 0.936$.
We find the z-score corresponding to this cumulative area, which is $z \approx 1.52$.
Now, we use the z-score formula $z = \frac{x – \mu}{\sigma}$ to solve for $\sigma$:
$1.52 = \frac{100 – 84.07}{\sigma} \Rightarrow \sigma = \frac{15.93}{1.52} \approx 10.48$
2. Calculate the Z-score for 90 feet:
Using the calculated $\sigma$, we find the z-score for $x = 90$.
$z = \frac{90 – 84.07}{10.48} = \frac{5.93}{10.48} \approx 0.5658$
We can round this to $z \approx 0.57$.
3. Find the Desired Probability:
We need to find $P(X \ge 90)$, which corresponds to $P(Z \ge 0.57)$.
Using a standard normal table, $P(Z < 0.57) \approx 0.7157$.
Therefore, $P(Z \ge 0.57) = 1 – P(Z < 0.57) \approx 1 – 0.7157 = 0.2843$.
This value is closest to 0.29.
✅ Answer: (A)
