AP Statistics 6.8 Confidence Intervals for the Difference of Two Proportions- MCQs - Exam Style Questions
Question
(B) \(\displaystyle \sqrt{\frac{(0.37)(0.63)}{2{,}002}-\frac{(0.88)(0.12)}{3{,}748}}\)
(C) \(\displaystyle \sqrt{\frac{(0.37)(0.63)}{2{,}002}}+\sqrt{\frac{(0.88)(0.12)}{3{,}748}}\)
(D) \(\displaystyle \sqrt{\frac{(0.70)(0.30)}{2{,}002}}+\sqrt{\frac{(0.70)(0.30)}{3{,}748}}\)
(E) \(\displaystyle \frac{(0.37)(0.63)}{\sqrt{2{,}002}}+\frac{(0.88)(0.12)}{\sqrt{3{,}748}}\)
▶️ Answer/Explanation
For a confidence interval for a difference of proportions \((p_1-p_2)\) using two independent samples, the standard error is
\[ \mathrm{SE}=\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2}}. \]
Here, group \(1\): not scientists \(\Rightarrow \hat p_1=0.37,\; n_1=2{,}002\).
Group \(2\): scientists \(\Rightarrow \hat p_2=0.88,\; n_2=3{,}748\).
Therefore
\[ \mathrm{SE}=\sqrt{\frac{(0.37)(0.63)}{2{,}002}+\frac{(0.88)(0.12)}{3{,}748}} \approx \sqrt{0.0001164+0.0000282} \approx \sqrt{0.0001446} \approx 0.012. \]
This matches option (A).
✅ Answer: (A)
Question
(B) 0.0695
(C) 0.1362
(D) 0.9800
(E) 1.6900
▶️ Answer/Explanation
1. Calculate Sample Proportions:
\(\hat{p}_1 = \frac{16}{85} \approx 0.1882\) (seniors)
\(\hat{p}_2 = \frac{19}{67} \approx 0.2836\) (juniors)
2. Standard Error Formula:
\(SE = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}\)
3. Calculate:
\(SE = \sqrt{\frac{0.1882(0.8118)}{85} + \frac{0.2836(0.7164)}{67}}\)
\(= \sqrt{\frac{0.1527}{85} + \frac{0.2032}{67}}\)
\(= \sqrt{0.001796 + 0.003033}\)
\(= \sqrt{0.004829} \approx 0.0695\)
✅ Answer: (B)