Home / CIE A level Math -Probability & Statistics 2: 6.2 Linear combinations of random variables : solving problems: Exam Style Questions Paper 6

CIE A level Math -Probability & Statistics 2: 6.2 Linear combinations of random variables : solving problems: Exam Style Questions Paper 6

Question

The random variable X has the distribution $N(31.2, 10.4^{2})$. Two independent random values of X, denoted by X_1 and X_2, are chosen.

Find $P(X_1 > 3X_2)$.

▶️Answer/Explanation

Solution:-

We are given that

XN(31.2,10.42)X \sim N(31.2, 10.4^2)

, and we need to find:

P(X1>3X2)P(X_1 > 3X_2)

Step 1: Define the New Variable

Let

Y=X13X2Y = X_1 – 3X_2

. Since

X1X_1

and

X2X_2

are independent, we use properties of normal distributions:

  • Mean:
    E[Y]=E[X1]3E[X2]=31.23(31.2)=62.4E[Y] = E[X_1] – 3E[X_2] = 31.2 – 3(31.2) = -62.4
  • Variance:
    Var(Y)=Var(X1)+9Var(X2)=10.42+9(10.42)=10(10.42)=1081.6\text{Var}(Y) = \text{Var}(X_1) + 9\text{Var}(X_2) = 10.4^2 + 9(10.4^2) = 10(10.4^2) = 1081.6
  • Standard Deviation:
    σY=1081.632.89\sigma_Y = \sqrt{1081.6} \approx 32.89

Step 2: Compute Probability

P(X1>3X2)=P(Y>0)P(X_1 > 3X_2) = P(Y > 0)

Standardizing

YY

:

Z=Y(62.4)32.89=0+62.432.891.90Z = \frac{Y – (-62.4)}{32.89} = \frac{0 + 62.4}{32.89} \approx 1.90

Using normal tables:

P(Z>1.90)=10.9713=0.0287P(Z > 1.90) = 1 – 0.9713 = 0.0287

Final Answer:

0.0287\boxed{0.0287}

Markscheme———
$E(X_1 – 3X_2) = 31.2 – 3 \times 31.2 \qquad [= -62.4]$

$Var(X_1 – 3X_2) = 10.4^2 + 3^2 \times 10.4^2 \qquad [= 1081.6]$

$\frac{0 – (-62.4)}{\sqrt{1081.6}} \qquad [= 1.897]$

$1 – \Phi(1.897)$

= 0.0289 (3 sf)

Scroll to Top