Home / CIE AS & A Level Physics 9702: Topic 1: Physical quantities and units- Unit : 1.1 Physical quantities Study Notes

AS Physics Physical quantities Study Notes

AS Physics Physical quantities Study Notes

AS Physics Physical quantities Study Notes at  IITian Academy  focus on  specific topic and type of questions asked in actual exam. Study Notes focus on AS Physics  Study Notes syllabus with guiding questions of

  1. understand that all physical quantities consist of a numerical magnitude and a unit
  2. make reasonable estimates of physical quantities included within the syllabus

Standard level and higher level: 3 hours
Additional higher level: 1 hour

AS Physics Study Notes- All Topics

Understanding Physical Quantities

A physical quantity is any property of a material or system that can be measured and expressed as a number multiplied by a unit.

Every physical quantity therefore has two essential components:

  • Numerical magnitude: the number that tells “how much” of the quantity is present.
  • Unit: the defined standard used for comparison or measurement.

For example, when we say an object’s length is \( \mathrm{5\,m} \):

  • The number 5 is the magnitude.
  • The symbol m (metre) represents the unit.

Key Idea: The value of a physical quantity is only meaningful when both its numerical magnitude and unit are stated together.

Representation:

The general relationship between a physical quantity, its magnitude, and its unit is written as:

\( \mathrm{Q = n \times u} \)

  • \( \mathrm{Q} \): physical quantity
  • \( \mathrm{n} \): numerical magnitude (number)
  • \( \mathrm{u} \): unit

Common Physical Quantities:

Physical QuantitySymbolSI UnitUnit Symbol
Length / Distance\( \mathrm{l,\,x,\,r} \)metre\( \mathrm{m} \)
Mass\( \mathrm{m} \)kilogram\( \mathrm{kg} \)
Time\( \mathrm{t} \)second\( \mathrm{s} \)
Electric current\( \mathrm{I} \)ampere\( \mathrm{A} \)
Temperature (thermodynamic)\( \mathrm{T} \)kelvin\( \mathrm{K} \)
Amount of substance\( \mathrm{n} \)mole\( \mathrm{mol} \)
Luminous intensity\( \mathrm{I_v} \)candela\( \mathrm{cd} \)
Area\( \mathrm{A} \)square metre\( \mathrm{m^2} \)
Volume\( \mathrm{V} \)cubic metre\( \mathrm{m^3} \)
Velocity / Speed\( \mathrm{v,\,u} \)metre per second\( \mathrm{m/s} \)
Acceleration\( \mathrm{a} \)metre per second squared\( \mathrm{m/s^2} \)
Force\( \mathrm{F} \)newton\( \mathrm{N} = \mathrm{kg\,m/s^2} \)
Pressure\( \mathrm{p} \)pascal\( \mathrm{Pa} = \mathrm{N/m^2} \)
Energy / Work / Heat\( \mathrm{E,\,W,\,Q} \)joule\( \mathrm{J} = \mathrm{N\,m} \)
Power\( \mathrm{P} \)watt\( \mathrm{W} = \mathrm{J/s} \)
Charge\( \mathrm{Q} \)coulomb\( \mathrm{C} = \mathrm{A\,s} \)
Potential difference (Voltage)\( \mathrm{V} \)volt\( \mathrm{V} = \mathrm{J/C} \)
Resistance\( \mathrm{R} \)ohm\( \mathrm{\Omega = V/A} \)
Capacitance\( \mathrm{C} \)farad\( \mathrm{F = C/V} \)
Magnetic flux\( \mathrm{\Phi} \)weber\( \mathrm{Wb} \)
Magnetic flux density\( \mathrm{B} \)tesla\( \mathrm{T = Wb/m^2} \)
Frequency\( \mathrm{f} \)hertz\( \mathrm{Hz = s^{-1}} \)
Angular velocity\( \mathrm{\omega} \)radian per second\( \mathrm{rad/s} \)
Angular acceleration\( \mathrm{\alpha} \)radian per second squared\( \mathrm{rad/s^2} \)
Momentum\( \mathrm{p} \)kilogram metre per second\( \mathrm{kg\,m/s} \)
Impulse\( \mathrm{I} \)newton second\( \mathrm{N\,s} \)
Density\( \mathrm{\rho} \)kilogram per cubic metre\( \mathrm{kg/m^3} \)
Specific heat capacity\( \mathrm{c} \)joule per kilogram per kelvin\( \mathrm{J/(kg\,K)} \)
Specific latent heat\( \mathrm{L} \)joule per kilogram\( \mathrm{J/kg} \)
Spring constant\( \mathrm{k} \)newton per metre\( \mathrm{N/m} \)
Torque / Moment of force\( \mathrm{\tau} \)newton metre\( \mathrm{N\,m} \)
Work function (photoelectric effect)\( \mathrm{\phi} \)joule\( \mathrm{J} \)
Wavelength\( \mathrm{\lambda} \)metre\( \mathrm{m} \)
Refractive index\( \mathrm{n} \)dimensionless
Efficiency\( \mathrm{\eta} \)dimensionless (ratio)

Example

A car travels a distance of \( \mathrm{120\,km} \) in \( \mathrm{2\,hours} \). Find its speed and express it as a physical quantity in standard SI units.

▶️ Answer / Explanation

Step 1: Write the formula for speed.

\( \mathrm{v = \dfrac{d}{t}} \)

Step 2: Convert all quantities to SI units.

\( \mathrm{d = 120\,km = 1.20\times10^5\,m} \)

\( \mathrm{t = 2\,h = 7200\,s} \)

Step 3: Calculate the speed.

\( \mathrm{v = \dfrac{1.20\times10^5}{7200} = 16.7\,m/s} \)

Step 4: State as a physical quantity.

\( \mathrm{v = 16.7\,m/s} \)

Interpretation: The numerical magnitude is 16.7 and the unit is m/s (metre per second).

Making Reasonable Estimates of Physical Quantities

In physics, an estimate is an approximate value of a quantity, based on reasoning, experience, or simplified calculation, rather than precise measurement.

Estimating helps physicists and engineers judge whether an answer or measurement is physically realistic and within the expected range of values.

Purpose of Estimation:

  • To check whether calculated results are reasonable.
  • To plan experiments or predict outcomes when exact data are unavailable.
  • To develop physical intuition about the scales and magnitudes of real-world quantities.

Approach to Making Estimates:

  • Use order of magnitude reasoning (e.g., powers of 10).
  • Use typical known values — e.g., mass of a person ≈ 70 kg, speed of sound ≈ 340 m/s.
  • Make simplifying assumptions (ignore small effects or use rounded values).
  • Perform quick, approximate calculations to get a plausible result.

Key Idea: Estimation allows you to evaluate the realism of a result before or after detailed calculation — a crucial skill in experimental and applied physics.

Common Examples of Reasonable Estimates:

Physical QuantityTypical Value (Order of Magnitude)Example Context
Diameter of an atom≈ \( \mathrm{10^{-10}\,m} \)Typical atomic scale
Wavelength of UV light≈ \( \mathrm{10\,nm = 1\times10^{-8}\,m} \)Ultraviolet region of EM spectrum
Height of an adult human≈ \( \mathrm{2\,m} \)Average person
Distance between Earth and Sun (1 AU)≈ \( \mathrm{1.5\times10^8\,m} \)Average Earth–Sun distance
Mass of a hydrogen atom≈ \( \mathrm{10^{-27}\,kg} \)Smallest atom mass
Mass of an adult human≈ \( \mathrm{70\,kg} \)Average adult body mass
Mass of a car≈ \( \mathrm{1000\,kg} \)Standard family car
Seconds in a day≈ \( \mathrm{9.0\times10^4\,s} \)24 hours = 86,400 s
Seconds in a year≈ \( \mathrm{3\times10^7\,s} \)365 days × 24 h × 3600 s
Speed of sound in air≈ \( \mathrm{3\times10^2\,m/s} \)At 20 °C in air
Power of a light bulb≈ \( \mathrm{60\,W} \)Typical household bulb
Atmospheric pressure≈ \( \mathrm{1\times10^5\,Pa} \)Standard atmospheric pressure at sea level
Length of a car≈ \( \mathrm{4\,m} \)Average family vehicle
Acceleration due to gravity≈ \( \mathrm{9.8\,m/s^2} \)Near Earth’s surface
Mass of an electron≈ \( \mathrm{9\times10^{-31}\,kg} \)Subatomic particle
Radius of Earth≈ \( \mathrm{6.4\times10^6\,m} \)Mean radius

Example 

Estimate the time it takes for sound to travel from a lightning strike 1 km away to reach an observer.

▶️ Answer / Explanation

Step 1: Use the formula \( \mathrm{t = \dfrac{d}{v}} \).

Given: \( \mathrm{d = 1.0 \times 10^3\,m} \), \( \mathrm{v = 3.4 \times 10^2\,m/s} \).

Step 2: Estimate the time:

\( \mathrm{t = \dfrac{1.0 \times 10^3}{3.4 \times 10^2} \approx 3\,s.} \)

Interpretation: The sound will reach the observer about 3 seconds after the lightning is seen — a reasonable estimate matching real-world experience.

Scroll to Top