Home / CIE AS/A Level Physics 25.2 Stellar radii Study Notes

CIE AS/A Level Physics 25.2 Stellar radii Study Notes- 2025-2027 Syllabus

CIE AS/A Level Physics 25.2 Stellar radii Study Notes – New Syllabus

CIE AS/A Level Physics 25.2 Stellar radii Study Notes at  IITian Academy  focus on  specific topic and type of questions asked in actual exam. Study Notes focus on AS/A Level Physics latest syllabus with Candidates should be able to:

  1. recall and use Wien’s displacement law \( \lambda_{\text{max}} \propto 1/T \) to estimate the peak surface temperature of a star
  2. use the Stefan–Boltzmann law \( L = 4\pi \sigma r^2 T^4 \)
  3. use Wien’s displacement law and the Stefan–Boltzmann law to estimate the radius of a star

AS/A Level Physics Study Notes- All Topics

Wien’s Displacement Law and Estimating the Peak Surface Temperature of a Star

Wien’s displacement law relates the temperature of a star’s surface to the wavelength at which it emits the maximum intensity of radiation.

Wien’s Displacement Law 

\( \mathrm{\lambda_{\text{max}} T = b} \)

  • \( \mathrm{\lambda_{\text{max}}} \) = wavelength of maximum emission (m)
  • \( \mathrm{T} \) = surface temperature (K)
  • \( \mathrm{b} \) = Wien’s constant \( \mathrm{b = 2.90\times10^{-3}\ m\,K} \)

This shows:

Hotter stars → shorter peak wavelength (bluer)
Cooler stars → longer peak wavelength (redder)

Estimating Star Temperature

Rearranging:

\( \mathrm{T = \dfrac{b}{\lambda_{\text{max}}}} \)

If we know a star’s peak emission wavelength, we can estimate its surface temperature.

Example

The peak wavelength of a star’s emission is \( \mathrm{580\ nm} \). Estimate the star’s surface temperature.

▶️ Answer / Explanation

Convert to metres:

\( \mathrm{580\ nm = 580\times10^{-9}\ m} \)

Use Wien’s law:

\( \mathrm{T = \dfrac{2.90\times10^{-3}}{580\times10^{-9}}} \)

\( \mathrm{T \approx 5000\ K} \)

The star’s temperature ≈ 5000 K.

Example

A blue star has a peak emission wavelength of \( \mathrm{300\ nm} \). Calculate its surface temperature.

▶️ Answer / Explanation

Convert wavelength:

\( \mathrm{300\ nm = 300\times10^{-9}\ m} \)

Apply Wien’s law:

\( \mathrm{T = \dfrac{2.90\times10^{-3}}{300\times10^{-9}}} \)

\( \mathrm{T \approx 9667\ K} \)

Temperature ≈ \( \mathrm{9.7\times10^3\ K} \)

Example

A star appears deep red, and its peak wavelength is measured as \( \mathrm{850\ nm} \). Estimate its surface temperature and comment on the star type.

▶️ Answer / Explanation

Convert wavelength:

\( \mathrm{850\ nm = 850\times10^{-9}\ m} \)

Calculate temperature:

\( \mathrm{T = \dfrac{2.90\times10^{-3}}{850\times10^{-9}}} \)

\( \mathrm{T \approx 3410\ K} \)

Temperature ≈ 3400 K.

This temperature corresponds to a cool red star, likely a red giant or an M-type main-sequence star.

Stefan–Boltzmann Law for Stellar Luminosity

The Stefan–Boltzmann law relates the luminosity of a star to its radius and surface temperature.

Stefan–Boltzmann Law

\( \mathrm{L = 4\pi \sigma r^2 T^4} \)

  • \( \mathrm{L} \) = luminosity (W)
  • \( \mathrm{r} \) = radius of the star (m)
  • \( \mathrm{T} \) = surface temperature (K)
  • \( \mathrm{\sigma} \) = Stefan–Boltzmann constant \( \mathrm{\sigma = 5.67\times10^{-8}\ W\,m^{-2}\,K^{-4}} \)

This law states that:

  • A hotter star emits much more energy (because of the \( \mathrm{T^4} \) dependence).
  • A larger star emits more energy (because of the \( \mathrm{r^2} \) term).

Rearranging if Needed

To find radius:

\( \mathrm{r = \sqrt{\dfrac{L}{4\pi \sigma T^4}}} \)

To find temperature:

\( \mathrm{T = \left( \dfrac{L}{4\pi \sigma r^2} \right)^{1/4}} \)

Example

A star has radius \( \mathrm{1.0\times10^9\ m} \) and temperature \( \mathrm{6000\ K} \). Calculate its luminosity.

▶️ Answer / Explanation

Use

\( \mathrm{L = 4\pi \sigma r^2 T^4} \)

Substitute values:

\( \mathrm{L = 4\pi (5.67\times10^{-8})(1.0\times10^9)^2 (6000)^4} \)

Compute step by step:

  • \( \mathrm{r^2 = 1.0\times10^{18}} \)
  • \( \mathrm{T^4 = 1.296\times10^{15}} \)
  • Combine: \( \mathrm{L \approx 4\pi (5.67\times10^{-8})(1.0\times10^{18})(1.296\times10^{15})} \)
  • \( \mathrm{L \approx 9.2\times10^{26}\ W} \)

Luminosity ≈ \( \mathrm{9.2\times10^{26}\ W} \)

Example

A star has luminosity \( \mathrm{3.0\times10^{28}\ W} \) and temperature \( \mathrm{8000\ K} \). Calculate its radius.

▶️ Answer / Explanation

Use:

\( \mathrm{r = \sqrt{\dfrac{L}{4\pi \sigma T^4}}} \)

Substitute:

\( \mathrm{r = \sqrt{\dfrac{3.0\times10^{28}}{4\pi (5.67\times10^{-8})(8000)^4}}} \)

Compute:

  • \( \mathrm{T^4 = 4.096\times10^{15}} \)
  • Denominator: \( \mathrm{4\pi (5.67\times10^{-8})(4.096\times10^{15}) \approx 2.92\times10^{9}} \)
  • \( \mathrm{r = \sqrt{\dfrac{3.0\times10^{28}}{2.92\times10^{9}}}} \)
  • \( \mathrm{r = \sqrt{1.03\times10^{19}} = 1.01\times10^{9}\ m} \)

Radius ≈ \( \mathrm{1.0\times10^9\ m} \)

Example

A red giant has radius \( \mathrm{5\times10^{10}\ m} \) and luminosity \( \mathrm{2\times10^{29}\ W} \). Estimate its surface temperature.

▶️ Answer / Explanation

Use:

\( \mathrm{T = \left( \dfrac{L}{4\pi \sigma r^2} \right)^{1/4}} \)

Calculate denominator:

  • \( \mathrm{r^2 = (5\times10^{10})^2 = 2.5\times10^{21}} \)
  • \( \mathrm{4\pi\sigma r^2 = 4\pi (5.67\times10^{-8})(2.5\times10^{21})} \)
  • ≈ \( \mathrm{1.78\times10^{15}} \)

Now:

\( \mathrm{T = \left( \dfrac{2\times10^{29}}{1.78\times10^{15}} \right)^{1/4}} \)

\( \mathrm{T = \left(1.12\times10^{14}\right)^{1/4}} \)

\( \mathrm{T \approx 3500\ K} \)

Surface temperature ≈ 3500 K.

Using Wien’s Displacement Law and the Stefan–Boltzmann Law to Estimate the Radius of a Star

To estimate a star’s radius, we typically know two observable quantities:

  • its peak wavelength of emission \( \mathrm{\lambda_{max}} \)
  • its luminosity \( \mathrm{L} \)

From these, we use:

  1. Wien’s displacement law to find temperature \( \mathrm{T} \)
  2. Stefan–Boltzmann law to find radius \( \mathrm{r} \)

Step 1 — Use Wien’s Displacement Law

\( \mathrm{\lambda_{max} T = b} \)

  • \( \mathrm{b = 2.90\times10^{-3}\ m\,K} \)

So:

\( \mathrm{T = \dfrac{b}{\lambda_{max}}} \)

Step 2 — Use Stefan–Boltzmann Law

\( \mathrm{L = 4\pi \sigma r^{2} T^{4}} \)

Rearrange to find radius:

\( \mathrm{r = \sqrt{\dfrac{L}{4\pi \sigma T^{4}}}} \)

Example 

A star has a peak wavelength of \( \mathrm{600\ nm} \). Its luminosity is \( \mathrm{3.8\times10^{26}\ W} \). Estimate its radius.

▶️ Answer / Explanation

Step 1: Convert wavelength

\( \mathrm{600\ nm = 600\times10^{-9}\ m} \)

Step 2: Find temperature using Wien’s law

\( \mathrm{T = \dfrac{2.90\times10^{-3}}{600\times10^{-9}} = 4833\ K} \)

Step 3: Use Stefan–Boltzmann law to find radius

\( \mathrm{r = \sqrt{\dfrac{3.8\times10^{26}}{4\pi(5.67\times10^{-8})(4833)^4}}} \)

Compute \( \mathrm{T^4 = 5.47\times10^{14}} \)

\( \mathrm{r = \sqrt{\dfrac{3.8\times10^{26}}{3.91\times10^{8}}}} \)

\( \mathrm{r = \sqrt{9.72\times10^{17}} = 9.86\times10^{8}\ m} \)

Radius ≈ \( \mathrm{1.0\times10^{9}\ m} \)

Example 

A blue star has \( \mathrm{\lambda_{max} = 250\ nm} \) and luminosity \( \mathrm{5.0\times10^{28}\ W} \). Estimate its radius.

▶️ Answer / Explanation

Convert wavelength:

\( \mathrm{250\ nm = 250\times10^{-9}\ m} \)

Temperature:

\( \mathrm{T = \dfrac{2.90\times10^{-3}}{250\times10^{-9}} = 1.16\times10^{4}\ K} \)

Apply Stefan–Boltzmann law:

\( \mathrm{T^4 = 1.81\times10^{16}} \)

\( \mathrm{r = \sqrt{\dfrac{5.0\times10^{28}}{4\pi (5.67\times10^{-8})(1.81\times10^{16})}}} \)

Denominator \( \approx 1.29\times10^{10} \)

\( \mathrm{r = \sqrt{3.88\times10^{18}} = 1.97\times10^{9}\ m} \)

Radius ≈ \( \mathrm{2.0\times10^{9}\ m} \)

Example 

A star has luminosity \( \mathrm{9\times10^{29}\ W} \). Its emitted spectrum peaks at \( \mathrm{150\ nm} \). Estimate the radius of the star.

▶️ Answer / Explanation

Convert wavelength:

\( \mathrm{150\ nm = 150\times10^{-9}\ m} \)

Temperature from Wien’s law:

\( \mathrm{T = \dfrac{2.90\times10^{-3}}{150\times10^{-9}} = 1.93\times10^{4}\ K} \)

Compute \( \mathrm{T^4} \):

\( \mathrm{T^4 = 1.39\times10^{17}} \)

Use Stefan–Boltzmann law:

\( \mathrm{r = \sqrt{\dfrac{9\times10^{29}}{4\pi(5.67\times10^{-8})(1.39\times10^{17})}}} \)

Denominator:

\( \mathrm{≈ 9.9\times10^{10}} \)

Finally:

\( \mathrm{r = \sqrt{\dfrac{9\times10^{29}}{9.9\times10^{10}}}} \)

\( \mathrm{r = \sqrt{9.09\times10^{18}} = 3.02\times10^{9}\ m} \)

Radius ≈ \( \mathrm{3.0\times10^{9}\ m} \)

Scroll to Top