Home / Edexcel A Level / A Level (IAL) Physics (YPH11) / 2.13 Refraction & Refractive Index- Study Notes

Edexcel A Level (IAL) Physics-2.13 Refraction & Refractive Index- Study Notes- New Syllabus

Edexcel A Level (IAL) Physics -2.13 Refraction & Refractive Index- Study Notes- New syllabus

Edexcel A Level (IAL) Physics -2.13 Refraction & Refractive Index- Study Notes -Edexcel A level Physics – per latest Syllabus.

Key Concepts:

  •  

Edexcel A level Physics-Study Notes- All Topics

Snell’s Law at a Boundary and Refractive Index \( n = \dfrac{c}{v} \)

When a wave passes from one transparent medium into another (e.g., air → glass), it changes speed, causing refraction. Snell’s law describes the relationship between the angles of incidence and refraction.

 Snell’s Law

At the interface between medium 1 and medium 2:

$ n_1 \sin\theta_1 = n_2 \sin\theta_2 $

  • \( n_1 \) = refractive index of medium 1
  • \( n_2 \) = refractive index of medium 2
  • \( \theta_1 \) = angle of incidence
  • \( \theta_2 \) = angle of refraction

Meaning:

  • If light slows down → it bends towards the normal.
  • If light speeds up → it bends away from the normal.
  • Refraction only occurs when wave speed changes.

Refractive Index

The refractive index of a medium is defined as:

$ n = \frac{c}{v} $

  • \( n \) = refractive index (no units)
  • \( c \) = speed of light in vacuum (\(3.00\times 10^8 \,\mathrm{m\,s^{-1}}\))
  • \( v \) = speed of light in the medium

Important: The refractive index is always ≥ 1 because light slows down in any medium.

Using Refractive Index in Snell’s Law

At a boundary:

$ \frac{c}{v_1}\sin\theta_1 = \frac{c}{v_2}\sin\theta_2 $

Simplifies to:

$ \frac{\sin\theta_1}{\sin\theta_2} = \frac{v_1}{v_2} $

Light bends towards slower medium (higher refractive index).

Physical Interpretation

  • Refraction occurs because wavelength changes when wave speed changes.
  • Frequency stays the same when crossing a boundary.
  • Refractive index describes optical density of medium.
  • Higher \( n \) means wave travels slower.

Example (Easy)

A light ray enters glass from air. Given \( n_{\text{air}} = 1.00 \) and \( n_{\text{glass}} = 1.50 \), find the angle of refraction if the incident angle is \( 30^\circ \).

▶️ Answer / Explanation

$ n_1 \sin\theta_1 = n_2 \sin\theta_2 $

$ 1.00 \sin 30^\circ = 1.50 \sin\theta_2 $

$ 0.5 = 1.50 \sin\theta_2 $

$ \sin\theta_2 = \frac{0.5}{1.50} = 0.333 $

$ \theta_2 \approx 19.5^\circ $

The light bends towards the normal.

Example (Medium)

The speed of light in a liquid is \( 2.00\times10^8 \,\mathrm{m\,s^{-1}} \). Find the refractive index.

▶️ Answer / Explanation

$ n = \frac{c}{v} = \frac{3.00\times10^8}{2.00\times10^8} = 1.5 $

Refractive index = 1.5

Example (Hard)

Light passes from medium A into medium B. A student measures: $ \theta_1 = 40^\circ,\quad \theta_2 = 25^\circ $ Find the ratio of refractive indices \( \frac{n_2}{n_1} \).

▶️ Answer / Explanation

$ n_1\sin\theta_1 = n_2\sin\theta_2 $ $ \frac{n_2}{n_1} = \frac{\sin\theta_1}{\sin\theta_2} $ $ = \frac{\sin 40^\circ}{\sin 25^\circ} = \frac{0.643}{0.423} \approx 1.52 $

Medium B has 1.52 times higher refractive index.

Scroll to Top