Edexcel A Level (IAL) Physics-5.10 Atomic Mass Unit- Study Notes- New Syllabus
Edexcel A Level (IAL) Physics -5.10 Atomic Mass Unit- Study Notes- New syllabus
Edexcel A Level (IAL) Physics -5.10 Atomic Mass Unit- Study Notes -Edexcel A level Physics – per latest Syllabus.
Key Concepts:
- use the atomic mass unit (u) to express small masses and convert between this and SI units
Using the Atomic Mass Unit (u) and Converting to SI Units
The atomic mass unit (u) is a convenient unit for expressing the extremely small masses of atoms, nuclei, and subatomic particles.
Definition of the Atomic Mass Unit
The atomic mass unit is defined as:
![]()
\( 1\ \mathrm{u} = \dfrac{1}{12} \times \text{mass of a carbon-12 atom} \)
In SI units:
\( 1\ \mathrm{u} = 1.66\times10^{-27}\ \mathrm{kg} \)
This small unit makes nuclear and atomic mass values easier to work with.
Why Use the Atomic Mass Unit?
- Masses of atoms and nuclei are extremely small in kilograms.
- Using kilograms leads to inconvenient numbers.
- The unit \( \mathrm{u} \) provides simpler numerical values.
Example: The mass of a proton is approximately \( 1.67\times10^{-27}\ \mathrm{kg} \) or \( \approx 1.01\ \mathrm{u} \).
Converting Between u and kg
(a) From u to kg
Multiply by \( 1.66\times10^{-27} \):
\( m(\mathrm{kg}) = m(\mathrm{u}) \times 1.66\times10^{-27} \)
(b) From kg to u
Divide by \( 1.66\times10^{-27} \):
\( m(\mathrm{u}) = \dfrac{m(\mathrm{kg})}{1.66\times10^{-27}} \)
Typical Atomic and Nuclear Masses
- Proton: \( 1.01\ \mathrm{u} \)
- Neutron: \( 1.01\ \mathrm{u} \)
- Electron: \( 5.49\times10^{-4}\ \mathrm{u} \)
- Carbon-12 nucleus: \( 12.0\ \mathrm{u} \)
Importance in Nuclear Physics
- Used to calculate mass defect
- Used in nuclear binding energy calculations
- Simplifies comparison of nuclear masses
- Essential for using \( \Delta E = c^2 \Delta m \)
Example (Easy)
Convert a mass of \( 2.50\ \mathrm{u} \) into kilograms.
▶️ Answer / Explanation
\( m = 2.50 \times 1.66\times10^{-27} = 4.15\times10^{-27}\ \mathrm{kg} \)
Example (Medium)
The mass of an electron is \( 9.11\times10^{-31}\ \mathrm{kg} \). Convert this mass into atomic mass units.
▶️ Answer / Explanation
\( m = \dfrac{9.11\times10^{-31}}{1.66\times10^{-27}} \)
\( m = 5.49\times10^{-4}\ \mathrm{u} \)
Example (Hard)
A nucleus has a mass defect of \( 0.025\ \mathrm{u} \). Calculate the energy released.
▶️ Answer / Explanation
Convert mass defect to kg:
\( \Delta m = 0.025 \times 1.66\times10^{-27} = 4.15\times10^{-29}\ \mathrm{kg} \)
Calculate energy:
\( \Delta E = c^2 \Delta m = (3.00\times10^8)^2 \times 4.15\times10^{-29} \)
\( \Delta E = 3.74\times10^{-12}\ \mathrm{J} \)
