Home / Edexcel A Level / A Level (IAL) Physics (YPH11) / 5.10 Atomic Mass Unit- Study Notes

Edexcel A Level (IAL) Physics-5.10 Atomic Mass Unit- Study Notes- New Syllabus

Edexcel A Level (IAL) Physics -5.10 Atomic Mass Unit- Study Notes- New syllabus

Edexcel A Level (IAL) Physics -5.10 Atomic Mass Unit- Study Notes -Edexcel A level Physics – per latest Syllabus.

Key Concepts:

  •  

Edexcel A level Physics-Study Notes- All Topics

Using the Atomic Mass Unit (u) and Converting to SI Units

The atomic mass unit (u) is a convenient unit for expressing the extremely small masses of atoms, nuclei, and subatomic particles.

 Definition of the Atomic Mass Unit

The atomic mass unit is defined as:

\( 1\ \mathrm{u} = \dfrac{1}{12} \times \text{mass of a carbon-12 atom} \)

In SI units:

\( 1\ \mathrm{u} = 1.66\times10^{-27}\ \mathrm{kg} \)

This small unit makes nuclear and atomic mass values easier to work with.

Why Use the Atomic Mass Unit?

  • Masses of atoms and nuclei are extremely small in kilograms.
  • Using kilograms leads to inconvenient numbers.
  • The unit \( \mathrm{u} \) provides simpler numerical values.

Example: The mass of a proton is approximately \( 1.67\times10^{-27}\ \mathrm{kg} \) or \( \approx 1.01\ \mathrm{u} \).

Converting Between u and kg

(a) From u to kg

Multiply by \( 1.66\times10^{-27} \):

\( m(\mathrm{kg}) = m(\mathrm{u}) \times 1.66\times10^{-27} \)

(b) From kg to u

Divide by \( 1.66\times10^{-27} \):

\( m(\mathrm{u}) = \dfrac{m(\mathrm{kg})}{1.66\times10^{-27}} \)

Typical Atomic and Nuclear Masses

  • Proton: \( 1.01\ \mathrm{u} \)
  • Neutron: \( 1.01\ \mathrm{u} \)
  • Electron: \( 5.49\times10^{-4}\ \mathrm{u} \)
  • Carbon-12 nucleus: \( 12.0\ \mathrm{u} \)

Importance in Nuclear Physics

  • Used to calculate mass defect
  • Used in nuclear binding energy calculations
  • Simplifies comparison of nuclear masses
  • Essential for using \( \Delta E = c^2 \Delta m \)

Example (Easy)

Convert a mass of \( 2.50\ \mathrm{u} \) into kilograms.

▶️ Answer / Explanation

\( m = 2.50 \times 1.66\times10^{-27} = 4.15\times10^{-27}\ \mathrm{kg} \)

Example (Medium)

The mass of an electron is \( 9.11\times10^{-31}\ \mathrm{kg} \). Convert this mass into atomic mass units.

▶️ Answer / Explanation

\( m = \dfrac{9.11\times10^{-31}}{1.66\times10^{-27}} \)

\( m = 5.49\times10^{-4}\ \mathrm{u} \)

Example (Hard)

A nucleus has a mass defect of \( 0.025\ \mathrm{u} \). Calculate the energy released.

▶️ Answer / Explanation

Convert mass defect to kg:

\( \Delta m = 0.025 \times 1.66\times10^{-27} = 4.15\times10^{-29}\ \mathrm{kg} \)

Calculate energy:

\( \Delta E = c^2 \Delta m = (3.00\times10^8)^2 \times 4.15\times10^{-29} \)

\( \Delta E = 3.74\times10^{-12}\ \mathrm{J} \)

Scroll to Top