IB Mathematics SL 1.3 Geometric sequences and series AA SL Paper 1- Exam Style Questions- New Syllabus
The sides of a square are 16 cm in length. The midpoints of the sides of this square are joined to form a new square and four triangles (diagram 1). The process is repeated twice, as shown in diagrams 2 and 3.
Let \({x_n}\) denote the length of one of the equal sides of each new triangle.
Let \({A_n}\) denote the area of each new triangle.
Part (a):
Complete the table for \( x_n \) and \( A_n \), for \( 1 \leq n \leq 3 \). (Do not write on this page.) [4]
\( n \) | 1 | 2 | 3 |
\( x_n \) | 8 | 4 | |
\( A_n \) | 32 | 16 |
Part (b):
Find \( A_6 \). [4]
Part (c):
For a square of side \( k \) cm, the process repeats indefinitely, with total shaded area \( k \) cm². Find \( k \). [7]
▶️ Answer/Explanation
Part (a) [4 marks]
Initial square side: 16 cm. Diagram 1: Midpoints form a square and four triangles, legs \( x_1 = \frac{16}{2} = 8 \) cm.
Area: \( A_1 = \frac{1}{2} \times 8 \times 8 = 32 \text{ cm}^2 \).
For \( n=2 \): Inner square’s diagonal = 16 cm. Pythagorean theorem:
\[ 8^2 + 8^2 = 128 \]
\[ \text{Side} = \sqrt{128} = 8\sqrt{2} \text{ cm} \]
Triangle legs: \( x_2 = \frac{8\sqrt{2}}{2} = 4\sqrt{2} \text{ cm} \).
Area: \( A_2 = \frac{1}{2} \times 4\sqrt{2} \times 4\sqrt{2} = 16 \text{ cm}^2 \).
For \( n=3 \): Square side \( 8\sqrt{2} \). Diagonal of triangle with legs \( 4\sqrt{2} \):
\[ (4\sqrt{2})^2 + (4\sqrt{2})^2 = 64 \]
\[ \text{Side} = 8 \text{ cm} \]
\[ x_3 = \frac{8}{2} = 4 \text{ cm} \]
Area: \( A_3 = \frac{1}{2} \times 4 \times 4 = 8 \text{ cm}^2 \).
Table:
\( n \) | 1 | 2 | 3 |
\( x_n \) | 8 | \( 4\sqrt{2} \) | 4 |
\( A_n \) | 32 | 16 | 8 |
Part (b) [4 marks]
Method 1: Areas: \( A_1 = 32 \), \( A_2 = 16 \), \( A_3 = 8 \). Geometric sequence, ratio \( r = \frac{16}{32} = \frac{1}{2} \).
\[ A_n = 32 \cdot \left(\frac{1}{2}\right)^{n-1} \]
\[ A_6 = 32 \cdot \left(\frac{1}{2}\right)^5 = 1 \text{ cm}^2 \]
Method 2: Side lengths: \( x_1 = 8 \), \( x_2 = 4\sqrt{2} \), \( x_3 = 4 \). Pattern: \( x_n = 8 \cdot \left(\frac{1}{\sqrt{2}}\right)^{n-1} \).
\[ x_6 = 8 \cdot \left(\frac{1}{\sqrt{2}}\right)^5 = \sqrt{2} \text{ cm} \]
Area: \( A_6 = \frac{1}{2} \times \sqrt{2} \times \sqrt{2} = 1 \text{ cm}^2 \).
Part (c) [7 marks]
Method 1: Shaded area: four triangles per stage. First triangle: \( x_1 = \frac{k}{2} \), \( A_1 = \frac{1}{2} \cdot \frac{k}{2} \cdot \frac{k}{2} = \frac{k^2}{8} \).
Four triangles, ratio \( \frac{1}{2} \):
\[ 4 A_n = \frac{k^2}{2} \cdot \left(\frac{1}{2}\right)^{n-1} \]
Infinite sum: \( S = \frac{\frac{k^2}{2}}{1 – \frac{1}{2}} = k^2 \).
Given: \( k^2 = k \).
\[ k (k – 1) = 0 \]
\[ k = 1 \text{ cm} \] (since \( k \neq 0 \)).
Method 2: Shaded area = \(\frac{k^2}{4}\).
Given: \( \frac{k^2}{4} = k \).
\[ k^2 – 4k = 0 \]
\[ k (k – 4) = 0 \]
\[ k = 4 \text{ cm} \] (since \( k \neq 0 \)).
(a)
Valid method for side length: e.g., \( 8^2 + 8^2 = c^2 \), 45-45-90 ratios, \( 8\sqrt{2} \), \( \frac{1}{2} s^2 = 16 \), \( x^2 + x^2 = 8^2 \) (M1)
Correct area working: e.g., \( \frac{1}{2} \times 4 \times 4 \) (A1)
\( x_2 = \sqrt{32} \) (or \( 4\sqrt{2} \)) (A1)
\( A_3 = 8 \) (A1)
(b)
Method 1:
Geometric progression for \( A_n \): e.g., \( u_n = u_1 r^{n-1} \) (R1)
\( r = \frac{1}{2} \) (A1)
Correct working: e.g., \( 32 \left(\frac{1}{2}\right)^5 \) (A1)
\( A_6 = 1 \) (A1)
Method 2:
Find \( x_6 \): e.g., \( 8 \left(\frac{1}{\sqrt{2}}\right)^5 \), sequence \( 8, 4\sqrt{2}, 4, 2\sqrt{2}, 2, \sqrt{2}, \ldots \) (M1)
\( x_6 = \sqrt{2} \) (A1)
Correct working: e.g., \( \frac{1}{2} (\sqrt{2})^2 \) (A1)
\( A_6 = 1 \) (A1)
(c)
Method 1:
Infinite geometric series: e.g., \( S_n = \frac{a}{1 – r} \), \( |r| < 1 \) (R1)
First triangle area: e.g., \( \frac{1}{2} \left(\frac{k}{2}\right)^2 \) (A1)
Substitute into sum: e.g., \( \frac{\frac{1}{2} \left(\frac{k}{2}\right)^2}{1 – \frac{1}{2}} \) (M1)
Correct equation: e.g., \( \frac{\frac{1}{2} \left(\frac{k}{2}\right)^2}{1 – \frac{1}{2}} = k \) (A1)
Correct working: e.g., \( k^2 = 4k \) (A1)
Solve quadratic: e.g., \( k (k – 4) \), \( k = 4 \) or \( k = 0 \) (M1)
\( k = 4 \) (A1)
Method 2:
Four sets of shaded regions: (R1)
Square area: \( k^2 \) (A1)
Shaded area: \( \frac{k^2}{4} \) (A1)
Equation: \( \frac{k^2}{4} = k \) (A1)
\( k^2 = 4k \) (A1)
Solve quadratic: e.g., \( k (k – 4) \), \( k = 4 \) or \( k = 0 \) (M1)
\( k = 4 \) (A1)