IBDP Maths SL 4.10 Equation of the regression line AA HL Paper 2- Exam Style Questions- New Syllabus
Consider the following bivariate data set where \( p, q \in \mathbb{Z}^+ \):
\( x \) | 5 | 6 | 6 | 8 | 10 |
---|---|---|---|---|---|
\( y \) | 9 | 13 | \( p \) | \( q \) | 21 |
The regression line of \( y \) on \( x \) has equation \( y = 2.1875x + 0.6875 \).
The regression line passes through the mean point \( (\overline{x}, \overline{y}) \).
(a) Given that \( \overline{x} = 7 \), verify that \( \overline{y} = 16 \). [2]
(b) Given that \( q – p = 3 \), find the value of \( p \) and the value of \( q \). [3]
▶️ Answer/Explanation
(a) [2 marks]
EITHER
Regression line: \( y = 2.1875x + 0.6875 \), passes through \( (\overline{x}, \overline{y}) \).
Given \( \overline{x} = 7 \), compute \( \overline{y} = 2.1875 \times 7 + 0.6875 = 15.3125 + 0.6875 = 16 \) (M1A1).
OR
Verify \( \overline{x} = \frac{5 + 6 + 6 + 8 + 10}{5} = 7 \), then use regression line to find \( \overline{y} = 16 \) (M1A1).
\( \overline{y} = 16 \) (verified) (AG).
(b) [3 marks]
EITHER
Use \( \overline{y} = 16 \), \( y \)-values: 9, 13, \( p \), \( q \), 21, so \( \frac{9 + 13 + p + q + 21}{5} = 16 \), \( p + q = 37 \) (M1A1).
Given \( q – p = 3 \), solve: \( p + q = 37 \), \( q = p + 3 \), so \( p + (p + 3) = 37 \), \( 2p = 34 \), \( p = 17 \), \( q = 20 \) (M1).
OR
Set up \( 16 = \frac{9 + 13 + p + p + 3 + 21}{5} \), solve \( 2p + 46 = 80 \), \( p = 17 \), \( q = p + 3 = 20 \) (M1A1M1).
\( p = 17 \), \( q = 20 \) (A1).
Markscheme Answers:
(a) \( \overline{y} = 16 \) (verified) (M1A1)
(b) \( p = 17 \), \( q = 20 \) (M1A1M1A1)
Total [5 marks]