Home / IBDP Maths AA: Topic : Topic: AHL 5.13: The evaluation of limits: IB style Questions HL Paper 2

IBDP Maths AA: Topic : Topic: AHL 5.13: The evaluation of limits: IB style Questions HL Paper 2

Question: [Maximum mark: 8]

Consider \(\lim_{x\rightarrow 0}\frac{arctan(cosx)-k}{x^{2}},\) where k ∈ R.
(a) Show that a finite limit only exists for k = \(\frac{\pi }{4}\).
(b) Using l’Hôpital’s rule, show algebraically that the value of the limit is \(-\frac{1}{4}\).

▶️Answer/Explanation

Ans:

(a) (as \(\lim_{x\rightarrow 0}x^{2} = 0,\) the indeterminate form \(\frac{0}{0}\) s required for the limit to exist) 
\(\Rightarrow \lim_{x\rightarrow 0}\left ( arctan(cosx)-k \right )=0\)
arctan1 – k = 0 (k = arctan1)
so \(k = \frac{\pi }{4}\)

Note: Award M1A0 for using \(k = \frac{\pi }{4}\) to show the limit is \(\frac{0}{0}\).

Note: Award A1 for a correct numerator and A1 for a correct denominator.
recognises to apply l’Hôpital’s rule again

Note: Award M0 if their limit is not the indeterminate form \(\frac{0}{0}\).

Note: Award A1 for a correct first term in the numerator and A1 for a correct second term in the numerator.

Note: Award A1 for a correct numerator and A1 for a correct denominator.

THEN
substitutes x = 0 into the correct expression to evaluate the limit

Note: The final A1 is dependent on all previous marks.

\(-\frac{1}{4}\)

Question

Use l’Hôpital’s rule to find

\(lim_{x\rightarrow 1}\frac{cos(x^2-1)-1}{e^{x-1}-x}\)

▶️Answer/Explanation

Ans: 

attempt to use l’Hôpital’s rule

= \(lim_{x\rightarrow 1}\frac{-2xsin(x^{2}-1)}{e^{x-1}-1}\)

Note: Award A1 for the numerator and A1 for the denominator.

substitution of 1 into their expression =\( _{0}^{0}\)hence use l’Hôpital’s rule again

Note: If the first use of l’Hôpital’s rule results in an expression which is not in indeterminate form, do not award any further marks.

attempt to use product rule in numerator

= \(lim_{x\rightarrow 1}\frac{-4x^{2}cos(x^{2}-1)-2 sin (x^{2}-1)}{e^{x-1}}=-4\)

Question

(a)     (i)     Using l’Hôpital’s rule, show that

\[\mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^{\lambda x}}}} = 0;{\text{ }}n \in {\mathbb{Z}^ + },{\text{ }}\lambda  \in {\mathbb{R}^ + }\]

(ii)     Using mathematical induction on \(n\), prove that

\[\int_0^\infty  {{x^n}{{\text{e}}^{ – \lambda x}}{\text{d}}x = \frac{{n!}}{{{\lambda ^{n + 1}}}};{\text{ }}} n \in \mathbb{N},{\text{ }}\lambda  \in {\mathbb{R}^ + }\]

(b)     The random variable \(X\) has probability density function

\[f(x) = \left\{ \begin{array}{l}\frac{{{\lambda ^{n + 1}}{x^n}{{\rm{e}}^{ – \lambda x}}}}{{n!}}x \ge 0,n \in {\mathbb{Z}^ + },\lambda  \in {\mathbb{R}^ + }\\{\rm{otherwise}}\end{array} \right.\]

Giving your answers in terms of \(n\) and \(\lambda \), determine

(i)     \({\text{E}}(X)\);

(ii)     the mode of \(X\).

(c)     Customers arrive at a shop such that the number of arrivals in any interval of duration \(d\) hours follows a Poisson distribution with mean \(8d\). The third customer on a particular day arrives \(T\) hours after the shop opens.

(i)     Show that \({\text{P}}(T > t) = {{\text{e}}^{ – 8t}}\left( {1 + 8t + 32{t^2}} \right)\).

(ii)     Find an expression for the probability density function of \(T\).

(iii)     Deduce the mean and the mode of \(T\).

▶️Answer/Explanation

Markscheme

(a)     (i)     using l’Hopital’s rule once,

\(\mathop {{\text{lim}}}\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^{\lambda x}}}} = \mathop {{\text{lim}}}\limits_{x \to \infty } \frac{{n{x^{n – 1}}}}{{\lambda {{\text{e}}^{\lambda x}}}}\)     (A1)(A1)

Note: Award A1 for numerator, A1 for denominator.

if \(n > 1\), this still gives \(\frac{\infty }{\infty }\) so differentiate again giving

\(\mathop {{\text{lim}}}\limits_{x \to \infty } \frac{{n(n – 1){x^{n – 2}}}}{{{\lambda ^2}{{\text{e}}^{\lambda x}}}}\)     (A1)

if \(n > 2\), this still gives \(\frac{\infty }{\infty }\) so differentiate a further \(n – 2\) times giving     M1

\(\mathop {{\text{lim}}}\limits_{x \to \infty } \frac{{n!}}{{{\lambda ^n}{{\text{e}}^{\lambda x}}}}\)     A1

\( = 0\)     AG

(ii)     first prove the result true for \(n = 0\)

\(\int_0^\infty  {{{\text{e}}^{ – \lambda x}}{\text{d}}x =  – \frac{1}{\lambda }\left[ {{{\text{e}}^{ – \lambda x}}} \right]_0^\infty  = \frac{1}{\lambda }} \) as required     M1A1

assume the result is true for \(n = k\)     M1

\(\int_0^\infty  {{x^k}{{\text{e}}^{ – \lambda x}}{\text{d}}x = \frac{{k!}}{{{\lambda ^{k + 1}}}}} \)

consider, for \(n = k + 1\),

\(\int_0^\infty  {{x^{k + 1}}{{\text{e}}^{ – \lambda x}}{\text{d}}x =  – \frac{1}{\lambda }\left[ {{x^{k + 1}}{{\text{e}}^{ – \lambda x}}} \right]_0^\infty  + \frac{{k + 1}}{\lambda }\int_0^\infty  {{x^k}{{\text{e}}^{ – \lambda x}}{\text{d}}x} } \)     M1A1

\( = (0 + )\frac{{k + 1}}{\lambda } \times \frac{{k!}}{{{\lambda ^{k + 1}}}}\)     A1

\( = \frac{{(k + 1)!}}{{{\lambda ^{k + 2}}}}\)     A1

therefore true for \(n = k \Rightarrow \) true for \(n = k + 1\) and since true for \(n = 0\), the result is proved by induction     R1

Note: Only award the R1 if at least 4 of the previous marks have been awarded.

Note: If a candidate starts at \(n = 1\), do not award the first 2 marks but follow through thereafter.

[13 marks]

 

(b)     (i)     \({\text{E}}(X) = \frac{{{\lambda ^{n + 1}}}}{{n!}}\int_0^\infty  {{x^{n + 1}}} {{\text{e}}^{ – \lambda x}}{\text{d}}x\)     M1

\( = \frac{{{\lambda ^{n + 1}}}}{{n!}} \times \frac{{(n + 1)!}}{{{\lambda ^{n + 2}}}}\)     A1

\( = \frac{{(n + 1)}}{\lambda }\)     A1

(ii)     the mode satisfies \(f'(x) = 0\)     M1

\(f'(x) = \frac{{{\lambda ^{n + 1}}}}{{n!}}\left( {n{x^{n – 1}}{{\text{e}}^{ – \lambda x}} – \lambda {x^n}{{\text{e}}^{ – \lambda x}}} \right)\)     A1

mode \( = \frac{n}{\lambda }\)     A1

[6 marks]

 

(c)     (i)     \({\text{P}}(T > t) = {\text{P}}(0,{\text{ }}1{\text{ or 2 arrivals in }}[0,{\text{ }}t])\)     (M1)

\( = {{\text{e}}^{ – 8t}} + {{\text{e}}^{ – 8t}} \times 8t + {{\text{e}}^{ – 8t}} \times \frac{{{{(8t)}^2}}}{2}\)     A1

\( = {{\text{e}}^{ – 8t}}\left( {1 + 8t + 32{t^2}} \right)\)     AG

(ii)     differentiating,

\( – f(t) =  – 8{{\text{e}}^{ – 8t}}\left( {1 + 8t + 32{t^2}} \right) + {{\text{e}}^{ – 8t}}(8 + 64t)\)     A1A1

Note: Award A1 for LHS, A1 for RHS.

\(f(t) = 256{t^2}{{\text{e}}^{ – 8t}}\)     A1

(iii)     with the previous notation, \(n = 2,{\text{ }}\lambda  = 8\).     (M1)

mean \( = \frac{3}{8}\)     A1

mode \( = \frac{1}{4}\)     A1

[8 marks]

Note: Do not follow through if they use a negative probability density function.

[27 marks]

Question

The random variable \(X\) has probability density function given by

\[f(x) = \left\{ {\begin{array}{*{20}{l}}
{x{{\text{e}}^{ – x}},}&{{\text{for }}x \geqslant 0,} \\
{0,}&{{\text{otherwise}}}
\end{array}} \right..\]

A sample of size 50 is taken from the distribution of \(X\).

a.Use l’Hôpital’s rule to show that \(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^3}}}{{{{\text{e}}^x}}} = 0\).[3]

b.(i)     Find \({\text{E}}({X^2})\).

(ii)     Show that \({\text{Var}}(X) = 2\).[10]

c.State the central limit theorem.[2]

d.Find the probability that the sample mean is less than 2.3.[2]

 
▶️Answer/Explanation

Markscheme

attempt to apply l’Hôpital’s rule     M1

\(\mathop {\lim }\limits_{x \to \infty } \frac{{3{x^2}}}{{{{\text{e}}^x}}}\)    A1

then \(\mathop {\lim }\limits_{x \to \infty } \frac{{6x}}{{{{\text{e}}^x}}}\)

then \(\mathop {\lim }\limits_{x \to \infty } \frac{6}{{{{\text{e}}^x}}}\)     A1

\( = 0\)    AG

[3 marks]

a.

(i)     \({\text{E}}({X^2}) = \mathop {\lim }\limits_{R \to \infty } \int\limits_0^R {{x^3}{{\text{e}}^{ – x}}{\text{d}}x} \)       M1

attempt at integration by parts      M1

the integral \( = [ – {x^3}{{\text{e}}^{ – x}}]_0^R + \mathop \smallint \limits_0^R 3{x^2}{{\text{e}}^{ – x}}{\text{d}}x\)       A1A1

\( = [ – {x^3}{{\text{e}}^{ – x}}]_0^R + [ – 3{x^2}{{\text{e}}^{ – x}}]_0^R + \int\limits_0^R {6x{{\text{e}}^{ – x}}{\text{d}}x} \)     M1

\( = [ – {x^3}{{\text{e}}^{ – x}}]_0^R + [ – 3{x^2}{{\text{e}}^{ – x}}]_0^R + [ – 6x{{\text{e}}^{ – x}}]_0^R + \int\limits_0^R {6{{\text{e}}^{ – x}}{\text{d}}x} \)     A1

\( = [ – {x^3}{{\text{e}}^{ – x}}]_0^R + [ – 3{x^2}{{\text{e}}^{ – x}}]_0^R + [ – 6x{{\text{e}}^{ – x}}]_0^R + [ – 6{{\text{e}}^{ – x}}]_0^R\)      A1

\( = 6\) when \(R \to \infty \)       R1

(ii)     \({\text{E}}(X) = 2\)      A1

\({\text{Var}}(X) = {\text{E}}({X^2}) – {\left( {{\text{E}}(X)} \right)^2} = 6 – {2^2}\)    M1

\( = 2\)    AG

[10 marks]

b.

if a random sample of size \(n\) is taken from any distribution \(X\), with \({\text{E}}(X) = \mu \) and \({\text{Var}}(X) = {\sigma ^2}\), then, for large n,     A1

the sample mean \(\bar X\) has approximate distribution \({\text{N}}\left( {\mu ,{\text{ }}\frac{{{\sigma ^2}}}{n}} \right)\)     A1

[2 marks]

c.

\(\bar X \sim {\text{N}}\left( {2,{\text{ }}\frac{2}{{50}} = {{(0.2)}^2}} \right)\)    (A1)

\({\text{P}}(\bar X < 2.3) = \left( {{\text{P}}(Z < 1.5)} \right) = 0.933\)    A1

[2 marks]

d.
Scroll to Top