IBDP Maths AI: Topic : Topic : SL 1.1: Operations with numbers: IB style Questions HL Paper 1

Question

a.Prove that the number \(14 641\) is the fourth power of an integer in any base greater than \(6\).[3]

b.For \(a,b \in \mathbb{Z}\) the relation \(aRb\) is defined if and only if \(\frac{a}{b} = {2^k}\) , \(k \in \mathbb{Z}\) .

  (i)     Prove that \(R\) is an equivalence relation.

  (ii)     List the equivalence classes of \(R\) on the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.[8]

 
▶️Answer/Explanation

Markscheme

a.\(14641\) (base \(a > 6\) ) \( = {a^4} + 4{a^3} + 6{a^2} + 4a + 1\) ,     M1A1

\( = {(a + 1)^4}\)     A1

this is the fourth power of an integer     AG

[3 marks]

b.

(i)     \(aRa\) since \(\frac{a}{a} = 1 = {2^0}\) , hence \(R\) is reflexive     A1

\(aRb \Rightarrow \frac{a}{b} = {2^k} \Rightarrow \frac{b}{a} = {2^{ – k}} \Rightarrow bRa\)

so R is symmetric     A1

\(aRb\) and \(bRc \Rightarrow \frac{a}{b} = {2^m}\), \(m \in \mathbb{Z}\) and \(bRc \Rightarrow \frac{b}{c} = {2^n}\) , \(n \in \mathbb{Z}\)     M1

\( \Rightarrow \frac{a}{b} \times \frac{b}{c} = \frac{a}{c} = {2^{m + n}}\) , \(m + n \in \mathbb{Z}\)    A1

\( \Rightarrow aRc\) so transitive     R1

hence \(R\) is an equivalence relation     AG 

(ii)     equivalence classes are {1, 2, 4, 8} , {3, 6} , {5, 10} , {7} , {9}     A3

Note: Award A2 if one class missing, A1 if two classes missing, A0 if three or more classes missing. 

[8 marks]

 

Question

a.Using mathematical induction or otherwise, prove that the number \({(1020)_n}\) , that is the number \(1020\) written with base \(n\) , is divisible by \(3\) for all values of \(n\) greater than \(2\).[8]

b.Explain briefly why the case \(n = 2\) has to be excluded.[1]

▶️Answer/Explanation

Markscheme

\({(1020)_n} = {n^3} + 2n\)     (R1)

so we are required to prove that \({n^3} + 2n\) is divisible by \(3\) for \(n \ge 3\)     (R1)

EITHER

when \(n = 3\) , \({n^3} + 2n = 33\) which is divisible by \(3\) so the result is true for \(n = 3\)     A1

assume the result is true for \(n = k\) , i.e. \({k^3} + 2k\) is divisible by \(3\)     M1

for \(n = k + 1\) ,

\({(k + 1)^3} + 2(k + 1) = {k^3} + 3{k^2} + 3k + 1 + 2k + 2\)     M1

\( = ({k^3} + 2k) + 3({k^2} + k + 1)\)     A1

the second term is clearly divisible by \(3\) and the first term is divisible by \(3\) by hypothesis     A1

therefore true for \(n = k \Rightarrow \)  true for \(n = k + 1\) and since shown true for \(n = 3\) ,

the result is proved by induction     R1

Note: Award the final R1 only if the two M1 marks have been awarded. 

OR

there are three cases to consider, let \(N\) be a positive integer

case 1: \(n = 3N\) , in this case

\(n({n^2} + 2) = 3N(9{N^2} + 2)\) which is divisible by \(3\)     M1A1

case 2: \(n = 3N + 1\) , in this case,

\(n({n^2} + 2) = (3N + 1)(9{N^2} + 6N + 3)\) which is divisible by \(3\)     M1A1

case 3: \(n = 3N + 2\) , in this case,

\(n({n^2} + 2) = (3N + 2)(9{N^2} + 12N + 6)\) which is divisible by \(3\)     M1A1

this proves the required result for all \(n > 2\)

[8 marks]

a.

numbers to base \(2\) do not use the digit \(2\) or equivalent     R1

[1 mark]

b.

Question

a.(i)     Use the Euclidean algorithm to find gcd(\(6750\), \(144\)) .

(ii)     Express your answer in the form \(6750r + 144s\) where r , \(s \in \mathbb{Z}\) .[6]

 

b.Consider the base \(15\) number CBA, where A, B, C represent respectively the digits ten, eleven, twelve.

  (i)     Write this number in base \(10\).

  (ii)     Hence express this number as a product of prime factors, writing the factors in base 4.[6]

 
▶️Answer/Explanation

Markscheme

(i)    \(6750 = 46 \times 144 + 126\)     M1A1

\(144 = 1 \times 126 + 18\)     A1

\(126 = 7 \times 18\)

\(\gcd(6750,144) = 18\)     A1 N0

(ii)     \(18 = 144 – 1 \times 126\)     (M1)

\( = 144 – (6750 – 46 \times 144)\)

\( = 47 \times 144 + ( – 1) \times 6750\)     A1  

[6 marks]

a.

(i)     \(n = 10 + 11 \times 15 + 12 \times {15^2}\)     (M1)(A1)

\( = 2875\)     A1  

(ii)     \(2875 = {5^3} \times 23\)    A1

\( = 11 \times 11 \times 11 \times 113\) in base \(4\)     A1A1

Note: A1 for \(11 \times 11 \times 11\) ,  A1 for \(113\) .

[6 marks]

b.

Question

Find the positive square root of the base 7 number \({(551662)_7}\), giving your answer as a base 7 number.

▶️Answer/Explanation

Markscheme

converting to base 10

\({(551662)_7} = 2 + 6 \times 7 + 6 \times {7^2} + 1 \times {7^3} + 5 \times {7^4} + 5 \times {7^5}\)     (M1)

\( = 96721\)     (A1)

\(\sqrt {96721}  = 311\)     A1

converting back to base 7

\(7)\underline {311} \)     (M1)

\()\underline {44} (3\)

\()\underline 6 (2\)     (A1)

it follows that \(\sqrt {{{(551662)}_7}}  = {(623)_7}\)     A1

Note: Accept \(623\).

 

[6 marks]

Question

a.Show that \({2^n} \equiv {( – 1)^n}(\bmod 3)\), where \(n \in \mathbb{N}\).[3]

b.Hence show that an integer is divisible by 3 if and only if the difference between the sum of its binary (base 2) digits in even-numbered positions and the sum of its binary digits in odd-numbered positions is divisible by 3.[3]

c.Express the hexadecimal (base 16) number \({\text{ABB}}{{\text{A}}_{{\text{16}}}}\) in binary.[4]

▶️Answer/Explanation

Markscheme

METHOD 1

\({2^n} = {(3 – 1)^n}\)    M1

\( = {3^n} + n{3^{n – 1}}( – 1) + \frac{{n(n – 1)}}{2}{3^{n – 2}}{( – 1)^2} + {\text{ }} \ldots {\text{ }} + {( – 1)^n}\)    A1

since all terms apart from the last one are divisible by 3     R1

\({2^n} \equiv {( – 1)^n}(\bmod 3)\)    AG

METHOD 2

attempt to reduce the powers of \(2(\bmod 3)\)     M1

\({2^0} = 1(\bmod 3);{\text{ }}{2^1} =  – 1(\bmod 3);{\text{ }}{2^2} = 1(\bmod 3);{\text{ }}{2^3} =  – 1(\bmod 3){\text{ }} \ldots \)    A1

since \(1(\bmod 3) \times 2 =  – 1(\bmod 3)\) and \( – 1(\bmod 3) \times 2 = 1(\bmod 3)\) the result can be generalized     R1

\(2n \equiv {( – 1)^n}(\bmod 3)\)    AG

[3 marks]

a.

the binary number \(N = {({a_n}{a_{n – 1}} \ldots {a_2}{a_1}{a_0})_2}\) has numerical value

\({a_0} \times 1 + {a_1} \times 2 + {a_2} \times {2^2} +  \ldots  + {a_n} \times {2^n}\)    A1

\(N = \left( {{a_0} – {a_1} + {a_2} –  \ldots {{( – 1)}^n}{a_n}} \right)(\bmod 3)\)    M1A1

hence divisibility of \(N\) by 3 coincides with statement of question     AG

[3 marks]

b.

\({\text{ABB}}{{\text{A}}_{16}} = 10 \times {16^3} + 11 \times {16^2} + 11 \times 16 + 10 \times 1\)    (A1)

\(N = {(1010)_2} \times {2^{12}} + {(1011)_2} \times {2^8} + {(1011)_2} \times {2^4} + {(1010)_2} \times {2^0}\)     (M1)(A1)

Note:     Award M1 for expressing A and B in binary.

\(N = {(1010101110111010)_2}\)    A1

[4 marks]

Scroll to Top