IB Mathematics SL 1.8 The sum of infinite geometric sequences AA SL Paper 1- Exam Style Questions- New Syllabus
Consider the series \( \ln x + p \ln x + \frac{1}{3} \ln x + \dots \), where \( x \in \mathbb{R}, x > 1 \) and \( p \in \mathbb{R}, p \neq 0 \).
Part (a): Consider the case where the series is geometric.
(i) Show that \( p = \pm \frac{1}{\sqrt{3}} \). [2 marks]
(ii) Given that \( p > 0 \) and the sum to infinity is \( s_\infty = 3 + \sqrt{3} \), find the value of \( x \). [3 marks]
Part (b): Now consider the case where the series is arithmetic with common difference \( d \).
(i) Show that \( p = \frac{2}{3} \). [2 marks]
(ii) Write down \( d \) in the form \( k \ln x \), where \( k \in \mathbb{Q} \). [1 mark]
(iii) The sum of the first \( n \) terms of the series is \( -3 \ln x \). Find the value of \( n \). [2 marks]
▶️ Answer/Explanation
Part (a) [Geometric Series]
(i) Show \( p = \pm \frac{1}{\sqrt{3}} \):
The series is \( \ln x, p \ln x, \frac{1}{3} \ln x, \dots \). For a geometric series, the ratio between consecutive terms is constant. First term: \( a = \ln x \), second term: \( p \ln x \), third term: \( \frac{1}{3} \ln x \).
Common ratio \( r \): \( \frac{p \ln x}{\ln x} = p \), and \( \frac{\frac{1}{3} \ln x}{p \ln x} = \frac{1}{3p} \).
For geometric series: \( p = \frac{1}{3p} \).
\[ p^2 = \frac{1}{3} \]
\[ p = \pm \sqrt{\frac{1}{3}} = \pm \frac{1}{\sqrt{3}} \]
(ii) Find \( x \) given \( p > 0 \) and \( s_\infty = 3 + \sqrt{3} \):
Since \( p > 0 \), use \( p = \frac{1}{\sqrt{3}} \). The series is geometric with first term \( \ln x \) and common ratio \( p = \frac{1}{\sqrt{3}} \).
Sum to infinity: \( s_\infty = \frac{a}{1 – r} = \frac{\ln x}{1 – \frac{1}{\sqrt{3}}} \).
\[ 1 – \frac{1}{\sqrt{3}} = \frac{\sqrt{3} – 1}{\sqrt{3}} \]
\[ s_\infty = \frac{\ln x}{\frac{\sqrt{3} – 1}{\sqrt{3}}} = \frac{\sqrt{3} \ln x}{\sqrt{3} – 1} \]
Given \( s_\infty = 3 + \sqrt{3} \):
\[ \frac{\sqrt{3} \ln x}{\sqrt{3} – 1} = 3 + \sqrt{3} \]
\[ \ln x = \frac{(3 + \sqrt{3})(\sqrt{3} – 1)}{\sqrt{3}} = \frac{3\sqrt{3} – 3 + 3 – \sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2 \]
\[ x = e^2 \]
Answer: \( x = e^2 \)
Part (b) [Arithmetic Series]
(i) Show \( p = \frac{2}{3} \):
For an arithmetic series, the difference between consecutive terms is constant. Terms: \( \ln x, p \ln x, \frac{1}{3} \ln x \).
Common difference \( d \): \( p \ln x – \ln x = (p – 1) \ln x \), and \( \frac{1}{3} \ln x – p \ln x = \left( \frac{1}{3} – p \right) \ln x \).
\[ (p – 1) \ln x = \left( \frac{1}{3} – p \right) \ln x \]
Since \( \ln x \neq 0 \), divide by \( \ln x \):
\[ p – 1 = \frac{1}{3} – p \]
\[ 2p = \frac{4}{3} \]
\[ p = \frac{2}{3} \]
(ii) Write \( d \) in the form \( k \ln x \):
Using \( p = \frac{2}{3} \), common difference: \( d = (p – 1) \ln x = \left( \frac{2}{3} – 1 \right) \ln x = -\frac{1}{3} \ln x \).
\[ d = k \ln x, \quad k = -\frac{1}{3} \]
Answer: \( d = -\frac{1}{3} \ln x \)
(iii) Find \( n \) given sum is \( -3 \ln x \):
Arithmetic series with first term \( a = \ln x \), common difference \( d = -\frac{1}{3} \ln x \). Sum of first \( n \) terms:
\[ s_n = \frac{n}{2} [2a + (n – 1)d] \]
\[ = \frac{n}{2} \left[ 2 \ln x + (n – 1) \left( -\frac{1}{3} \ln x \right) \right] \]
\[ = \frac{n}{2} \ln x \left[ 2 – \frac{n – 1}{3} \right] = \ln x \cdot \frac{n}{2} \cdot \frac{6 – (n – 1)}{3} = \ln x \cdot \frac{n (7 – n)}{6} \]
Given \( s_n = -3 \ln x \):
\[ \frac{n (7 – n)}{6} \ln x = -3 \ln x \]
Divide by \( \ln x \):
\[ \frac{n (7 – n)}{6} = -3 \]
\[ n (7 – n) = -18 \]
\[ n^2 – 7n – 18 = 0 \]
Solve: Discriminant \( \Delta = (-7)^2 – 4 \cdot 1 \cdot (-18) = 49 + 72 = 121 \).
\[ n = \frac{7 \pm \sqrt{121}}{2} = \frac{7 \pm 11}{2} \]
\[ n = 9 \text{ or } n = -2 \]
Since \( n \) is a positive integer (number of terms), \( n = 9 \).
Answer: \( n = 9 \)