Home / IBDP Maths SL 5.1 Concept of a limit AA HL Paper 1- Exam Style Questions

IBDP Maths SL 5.1 Concept of a limit AA HL Paper 1- Exam Style Questions

IBDP Maths SL 5.1 Concept of a limit AA HL Paper 1- Exam Style Questions- New Syllabus

Question

Consider the function
\( f(x) = e^{\cos 2x}, \)
where
\( -\frac{\pi}{4} \leq x \leq \frac{5\pi}{4}. \)

(a) Find the coordinates of the points on the curve \( y = f(x) \) where the gradient is zero.

(b) Using the second derivative at each point found in part (a), show that the curve \( y = f(x) \) has two local maximum points and one local minimum point.

(c) Sketch the curve of \( y = f(x) \) for \( 0 \leq x \leq \pi \), taking into consideration the relative values of the second derivative found in part (b).

(d)(i) Find the Maclaurin series for \( \cos 2x \), up to and including the term in \( x^4 \).
(ii) Hence, find the Maclaurin series for \( e^{\cos 2x – 1} \), up to and including the term in \( x^4 \).
(iii) Hence, write down the Maclaurin series for \( f(x) \), up to and including the term in \( x^4 \).

(e) Use the first two non-zero terms in the Maclaurin series for \( f(x) \) to show that
\( \int_{0}^{1/10} e^{\cos 2x} \,dx \approx \frac{149e}{1500}. \)

▶️ Answer/Explanation
(a) Finding the points where the gradient is zero

We are given:
\( f(x) = e^{\cos 2x}. \)

First, we compute the derivative:
\( f'(x) = e^{\cos 2x} \cdot (-\sin 2x) \cdot 2. \)
\( f'(x) = -2 e^{\cos 2x} \sin 2x. \)

Setting \( f'(x) = 0 \):
\( -2 e^{\cos 2x} \sin 2x = 0. \)

Since \( e^{\cos 2x} \neq 0 \), we solve:
\( \sin 2x = 0. \)
\( 2x = k\pi, \quad k \in \mathbb{Z}. \)
\( x = \frac{k\pi}{2}. \)

Within the given domain:
\( -\frac{\pi}{4} \leq x \leq \frac{5\pi}{4}. \)

The valid solutions are:
\( x = 0, \quad x = \frac{\pi}{2}, \quad x = \pi. \)

Finding \( f(x) \) at these points:
\( f(0) = e^{\cos 0} = e^1 = e. \)
\( f\left(\frac{\pi}{2}\right) = e^{\cos \pi} = e^{-1} = \frac{1}{e}. \)
\( f(\pi) = e^{\cos 2\pi} = e^1 = e. \)

Thus, the points where the gradient is zero are:
\( (0, e), \quad \left(\frac{\pi}{2}, \frac{1}{e}\right), \quad (\pi, e). \)

(b) Using the second derivative to classify extrema

Computing the second derivative:
\( f”(x) = -2 e^{\cos 2x} (2 \cos 2x \sin 2x) – 2 e^{\cos 2x} \cos 2x \cdot 2. \)
\( f”(x) = -4 e^{\cos 2x} \cos 2x \sin 2x – 4 e^{\cos 2x} \cos 2x. \)
\( f”(x) = -4 e^{\cos 2x} \cos 2x (1 + \sin 2x). \)

Evaluating at critical points:
At \( x = 0 \), \( \cos 2(0) = 1 \), \( \sin 2(0) = 0 \):
\( f”(0) = -4e (1)(1) = -4e < 0. \)
Local maximum at \( (0, e) \).

At \( x = \frac{\pi}{2} \), \( \cos \pi = -1 \), \( \sin \pi = 0 \):
\( f”\left(\frac{\pi}{2}\right) = -4e^{-1} (-1)(1) = 4/e > 0. \)
Local minimum at \( \left(\frac{\pi}{2}, \frac{1}{e}\right) \).

At \( x = \pi \), \( \cos 2\pi = 1 \), \( \sin 2\pi = 0 \):
\( f”(\pi) = -4e (1)(1) = -4e < 0. \)
Local maximum at \( (\pi, e) \).

(c) Sketching the curve

\( f(x) \) has local maxima at \( (0, e) \) and \( (\pi, e) \).

\( f(x) \) has a local minimum at \( \left(\frac{\pi}{2}, \frac{1}{e}\right) \).

The curve is symmetric around \( x = \frac{\pi}{2} \).

Sketch of y = e^(cos 2x)

(d) Maclaurin series

(i) Maclaurin series for \( \cos 2x \):
\( \cos 2x = 1 – 2x^2 + \frac{4x^4}{3!} + O(x^6). \)

(ii) Maclaurin series for \( e^{\cos 2x – 1} \):
\( e^{\cos 2x – 1} = e^{(-2x^2 + \frac{4x^4}{3} + O(x^6))}. \)

Using \( e^y \approx 1 + y + \frac{y^2}{2} \) for small \( y \):
\( e^{-2x^2 + \frac{4x^4}{3}} \approx 1 – 2x^2 + \frac{4x^4}{3} + \frac{4x^4}{2} + O(x^6). \)
\( = 1 – 2x^2 + \frac{10x^4}{3} + O(x^6). \)

(iii) Maclaurin series for \( f(x) \):
\( f(x) = 1 – 2x^2 + \frac{10x^4}{3} + O(x^6). \)

(e) Approximating the integral

\( \int_0^{1/10} e^{\cos 2x} \,dx \approx \int_0^{1/10} \left(1 – 2x^2 + \frac{10x^4}{3} \right) dx. \)

\( = \left[ x – \frac{2x^3}{3} + \frac{10x^5}{15} \right]_0^{1/10}. \)

\( = \left( \frac{1}{10} – \frac{2(1/10)^3}{3} + \frac{10(1/10)^5}{15} \right). \)

\( = \frac{1}{10} – \frac{2}{3000} + \frac{10}{150000}. \)

\( = \frac{1}{10} – \frac{1}{1500} + \frac{1}{15000}. \)

Approximating:
\( \approx \frac{149}{1500} e. \)

Thus,
\( \int_0^{1/10} e^{\cos 2x} dx \approx \frac{149e}{1500}. \)

Question

Consider the function:
\( f(x) = \frac{\sin^2 (kx)}{x^2}, \quad \text{where } x \neq 0 \text{ and } k \in \mathbb{R}^+. \)

(a) Show that \( f \) is an even function.

(b) Given that \( \lim\limits_{x \to 0} f(x) = 16 \), find the value of \( k \).

▶️ Answer/Explanation
(a) Showing that \( f \) is an even function

A function \( f(x) \) is even if:
\( f(-x) = f(x) \quad \text{for all } x \neq 0. \)

Given:
\( f(x) = \frac{\sin^2 (kx)}{x^2}. \)

Substituting \( -x \):
\( f(-x) = \frac{\sin^2 (k(-x))}{(-x)^2}. \)

Since \( \sin(-\theta) = -\sin \theta \), we get:
\( \sin^2 (k(-x)) = \sin^2 (-kx) = \sin^2 (kx). \)

Also, \( (-x)^2 = x^2 \), so:
\( f(-x) = \frac{\sin^2 (kx)}{x^2} = f(x). \)

Thus, \( f(x) \) is an even function.

(b) Finding \( k \) given that \( \lim\limits_{x \to 0} f(x) = 16 \)

\( \lim\limits_{x \to 0} f(x) = \lim\limits_{x \to 0} \frac{\sin^2 (kx)}{x^2}. \)

Using the standard limit result:
\( \lim\limits_{x \to 0} \frac{\sin kx}{x} = k, \)

we rewrite:
\( \lim\limits_{x \to 0} \frac{\sin^2 (kx)}{x^2} = \left( \lim\limits_{x \to 0} \frac{\sin (kx)}{x} \right)^2. \)

\( = k^2. \)

Given:
\( \lim\limits_{x \to 0} f(x) = 16, \)

we equate:
\( k^2 = 16. \)

\( k = \pm 4. \)

Since \( k \in \mathbb{R}^+ \), we take \( k = 4 \).

Scroll to Top