IBDP Maths SL 5.1 Concept of a limit AA HL Paper 1- Exam Style Questions- New Syllabus
Consider the function
\( f(x) = e^{\cos 2x}, \)
where
\( -\frac{\pi}{4} \leq x \leq \frac{5\pi}{4}. \)
(a) Find the coordinates of the points on the curve \( y = f(x) \) where the gradient is zero.
(b) Using the second derivative at each point found in part (a), show that the curve \( y = f(x) \) has two local maximum points and one local minimum point.
(c) Sketch the curve of \( y = f(x) \) for \( 0 \leq x \leq \pi \), taking into consideration the relative values of the second derivative found in part (b).
(d)(i) Find the Maclaurin series for \( \cos 2x \), up to and including the term in \( x^4 \).
(ii) Hence, find the Maclaurin series for \( e^{\cos 2x – 1} \), up to and including the term in \( x^4 \).
(iii) Hence, write down the Maclaurin series for \( f(x) \), up to and including the term in \( x^4 \).
(e) Use the first two non-zero terms in the Maclaurin series for \( f(x) \) to show that
\( \int_{0}^{1/10} e^{\cos 2x} \,dx \approx \frac{149e}{1500}. \)
▶️ Answer/Explanation
We are given:
\( f(x) = e^{\cos 2x}. \)
First, we compute the derivative:
\( f'(x) = e^{\cos 2x} \cdot (-\sin 2x) \cdot 2. \)
\( f'(x) = -2 e^{\cos 2x} \sin 2x. \)
Setting \( f'(x) = 0 \):
\( -2 e^{\cos 2x} \sin 2x = 0. \)
Since \( e^{\cos 2x} \neq 0 \), we solve:
\( \sin 2x = 0. \)
\( 2x = k\pi, \quad k \in \mathbb{Z}. \)
\( x = \frac{k\pi}{2}. \)
Within the given domain:
\( -\frac{\pi}{4} \leq x \leq \frac{5\pi}{4}. \)
The valid solutions are:
\( x = 0, \quad x = \frac{\pi}{2}, \quad x = \pi. \)
Finding \( f(x) \) at these points:
\( f(0) = e^{\cos 0} = e^1 = e. \)
\( f\left(\frac{\pi}{2}\right) = e^{\cos \pi} = e^{-1} = \frac{1}{e}. \)
\( f(\pi) = e^{\cos 2\pi} = e^1 = e. \)
Thus, the points where the gradient is zero are:
\( (0, e), \quad \left(\frac{\pi}{2}, \frac{1}{e}\right), \quad (\pi, e). \)
Computing the second derivative:
\( f”(x) = -2 e^{\cos 2x} (2 \cos 2x \sin 2x) – 2 e^{\cos 2x} \cos 2x \cdot 2. \)
\( f”(x) = -4 e^{\cos 2x} \cos 2x \sin 2x – 4 e^{\cos 2x} \cos 2x. \)
\( f”(x) = -4 e^{\cos 2x} \cos 2x (1 + \sin 2x). \)
Evaluating at critical points:
At \( x = 0 \), \( \cos 2(0) = 1 \), \( \sin 2(0) = 0 \):
\( f”(0) = -4e (1)(1) = -4e < 0. \)
Local maximum at \( (0, e) \).
At \( x = \frac{\pi}{2} \), \( \cos \pi = -1 \), \( \sin \pi = 0 \):
\( f”\left(\frac{\pi}{2}\right) = -4e^{-1} (-1)(1) = 4/e > 0. \)
Local minimum at \( \left(\frac{\pi}{2}, \frac{1}{e}\right) \).
At \( x = \pi \), \( \cos 2\pi = 1 \), \( \sin 2\pi = 0 \):
\( f”(\pi) = -4e (1)(1) = -4e < 0. \)
Local maximum at \( (\pi, e) \).
\( f(x) \) has local maxima at \( (0, e) \) and \( (\pi, e) \).
\( f(x) \) has a local minimum at \( \left(\frac{\pi}{2}, \frac{1}{e}\right) \).
The curve is symmetric around \( x = \frac{\pi}{2} \).
(i) Maclaurin series for \( \cos 2x \):
\( \cos 2x = 1 – 2x^2 + \frac{4x^4}{3!} + O(x^6). \)
(ii) Maclaurin series for \( e^{\cos 2x – 1} \):
\( e^{\cos 2x – 1} = e^{(-2x^2 + \frac{4x^4}{3} + O(x^6))}. \)
Using \( e^y \approx 1 + y + \frac{y^2}{2} \) for small \( y \):
\( e^{-2x^2 + \frac{4x^4}{3}} \approx 1 – 2x^2 + \frac{4x^4}{3} + \frac{4x^4}{2} + O(x^6). \)
\( = 1 – 2x^2 + \frac{10x^4}{3} + O(x^6). \)
(iii) Maclaurin series for \( f(x) \):
\( f(x) = 1 – 2x^2 + \frac{10x^4}{3} + O(x^6). \)
\( \int_0^{1/10} e^{\cos 2x} \,dx \approx \int_0^{1/10} \left(1 – 2x^2 + \frac{10x^4}{3} \right) dx. \)
\( = \left[ x – \frac{2x^3}{3} + \frac{10x^5}{15} \right]_0^{1/10}. \)
\( = \left( \frac{1}{10} – \frac{2(1/10)^3}{3} + \frac{10(1/10)^5}{15} \right). \)
\( = \frac{1}{10} – \frac{2}{3000} + \frac{10}{150000}. \)
\( = \frac{1}{10} – \frac{1}{1500} + \frac{1}{15000}. \)
Approximating:
\( \approx \frac{149}{1500} e. \)
Thus,
\( \int_0^{1/10} e^{\cos 2x} dx \approx \frac{149e}{1500}. \)
Consider the function:
\( f(x) = \frac{\sin^2 (kx)}{x^2}, \quad \text{where } x \neq 0 \text{ and } k \in \mathbb{R}^+. \)
(a) Show that \( f \) is an even function.
(b) Given that \( \lim\limits_{x \to 0} f(x) = 16 \), find the value of \( k \).
▶️ Answer/Explanation
A function \( f(x) \) is even if:
\( f(-x) = f(x) \quad \text{for all } x \neq 0. \)
Given:
\( f(x) = \frac{\sin^2 (kx)}{x^2}. \)
Substituting \( -x \):
\( f(-x) = \frac{\sin^2 (k(-x))}{(-x)^2}. \)
Since \( \sin(-\theta) = -\sin \theta \), we get:
\( \sin^2 (k(-x)) = \sin^2 (-kx) = \sin^2 (kx). \)
Also, \( (-x)^2 = x^2 \), so:
\( f(-x) = \frac{\sin^2 (kx)}{x^2} = f(x). \)
Thus, \( f(x) \) is an even function.
\( \lim\limits_{x \to 0} f(x) = \lim\limits_{x \to 0} \frac{\sin^2 (kx)}{x^2}. \)
Using the standard limit result:
\( \lim\limits_{x \to 0} \frac{\sin kx}{x} = k, \)
we rewrite:
\( \lim\limits_{x \to 0} \frac{\sin^2 (kx)}{x^2} = \left( \lim\limits_{x \to 0} \frac{\sin (kx)}{x} \right)^2. \)
\( = k^2. \)
Given:
\( \lim\limits_{x \to 0} f(x) = 16, \)
we equate:
\( k^2 = 16. \)
\( k = \pm 4. \)
Since \( k \in \mathbb{R}^+ \), we take \( k = 4 \).