Home / IB DP Math AA Topic SL 5.2 Identifying increasing and decreasing functions SL Paper 2

IB DP Math AA Topic SL 5.2 Identifying increasing and decreasing functions SL Paper 2

Question

Let \(f(x) = \sqrt {\frac{x}{{1 – x}}} ,{\text{ }}0 < x < 1\).

Show that \(f'(x) = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\) and deduce that f is an increasing function.

[5]
a.

Show that the curve \(y = f(x)\) has one point of inflexion, and find its coordinates.

[6]
b.

 Use the substitution \(x = {\sin ^2}\theta \) to show that \(\int {f(x){\text{d}}x}  = \arcsin \sqrt x  – \sqrt {x – {x^2}}  + c\) .

[11]
c.
Answer/Explanation

Markscheme

EITHER

derivative of \(\frac{x}{{1 – x}}\) is \(\frac{{(1 – x) – x( – 1)}}{{{{(1 – x)}^2}}}\)     M1A1

\(f'(x) = \frac{1}{2}{\left( {\frac{x}{{1 – x}}} \right)^{ – \frac{1}{2}}}\frac{1}{{{{(1 – x)}^2}}}\)     M1A1

\( = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\)     AG

\(f'(x) > 0\) (for all \(0 < x < 1\)) so the function is increasing     R1

OR

\(f(x) = \frac{{{x^{\frac{1}{2}}}}}{{{{(1 – x)}^{\frac{1}{2}}}}}\)

\(f'(x) = \frac{{{{(1 – x)}^{\frac{1}{2}}}\left( {\frac{1}{2}{x^{ – \frac{1}{2}}}} \right) – \frac{1}{2}{x^{\frac{1}{2}}}{{(1 – x)}^{ – \frac{1}{2}}}( – 1)}}{{1 – x}}\)     M1A1

\( = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{1}{2}}} + \frac{1}{2}{x^{\frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\)     A1

\( = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}[1 – x + x]\)     M1

\( = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\)     AG

\(f'(x) > 0\) (for all \(0 < x < 1\)) so the function is increasing     R1

[5 marks]

a.

\(f'(x) = \frac{1}{2}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{3}{2}}}\)

\( \Rightarrow f”(x) = -\frac{1}{4}{x^{ – \frac{3}{2}}}{(1 – x)^{ – \frac{3}{2}}} + \frac{3}{4}{x^{ – \frac{1}{2}}}{(1 – x)^{ – \frac{5}{2}}}\)     M1A1

\( = -\frac{1}{4}{x^{ – \frac{3}{2}}}{(1 – x)^{ – \frac{5}{2}}}[1 – 4x]\)

\(f”(x) = 0 \Rightarrow x = \frac{1}{4}\)     M1A1

\(f”(x)\) changes sign at \(x = \frac{1}{4}\) hence there is a point of inflexion     R1

\(x = \frac{1}{4} \Rightarrow y = \frac{1}{{\sqrt 3 }}\)     A1

the coordinates are \(\left( {\frac{1}{4},\frac{1}{{\sqrt 3 }}} \right)\)

[6 marks] 

b.

\(x = {\sin ^2}\theta  \Rightarrow \frac{{{\text{d}}x}}{{{\text{d}}\theta }} = 2\sin \theta \cos \theta \)     M1A1

\(\int {\sqrt {\frac{x}{{1 – x}}} {\text{d}}x = \int {\sqrt {\frac{{{{\sin }^2}\theta }}{{1 – {{\sin }^2}\theta }}} 2\sin \theta \cos \theta {\text{d}}\theta } } \)     M1A1

\( = \int {2{{\sin }^2}\theta {\text{d}}\theta } \)     A1

\( = \int {1 – \cos 2\theta } {\text{d}}\theta \)     M1A1

\( = \theta  – \frac{1}{2}\sin 2\theta  + c\)     A1

\(\theta  = \arcsin \sqrt x \)     A1

\(\frac{1}{2}\sin 2\theta  = \sin \theta \cos \theta  = \sqrt x \sqrt {1 – x}  = \sqrt {x – {x^2}} \)     M1A1

hence \(\int {\sqrt {\frac{x}{{1 – x}}} {\text{d}}x = \arcsin \sqrt x }  – \sqrt {x – {x^2}}  + c\)     AG

[11 marks] 

c.

Examiners report

 Part (a) was generally well done, although few candidates made the final deduction asked for. Those that lost other marks in this part were generally due to mistakes in algebraic manipulation. In part (b) whilst many students found the second derivative and set it equal to zero, few then confirmed that it was a point of inflexion. There were several good attempts for part (c), even though there were various points throughout the question that provided stopping points for other candidates.

a.

Part (a) was generally well done, although few candidates made the final deduction asked for. Those that lost other marks in this part were generally due to mistakes in algebraic manipulation. In part (b) whilst many students found the second derivative and set it equal to zero, few then confirmed that it was a point of inflexion. There were several good attempts for part (c), even though there were various points throughout the question that provided stopping points for other candidates.

b.

Part (a) was generally well done, although few candidates made the final deduction asked for. Those that lost other marks in this part were generally due to mistakes in algebraic manipulation. In part (b) whilst many students found the second derivative and set it equal to zero, few then confirmed that it was a point of inflexion. There were several good attempts for part (c), even though there were various points throughout the question that provided stopping points for other candidates.

c.

Question

Consider the function defined by \(f(x) = {x^3} – 3{x^2} + 4\).

Determine the values of \(x\) for which \(f(x)\) is a decreasing function.

[4]
a.

There is a point of inflexion, \(P\), on the curve \(y = f(x)\).

Find the coordinates of \(P\).

[3]
b.
Answer/Explanation

Markscheme

attempt to differentiate \(f(x) = {x^3} – 3{x^2} + 4\)     M1

\(f'(x) = 3{x^2} – 6x\)     A1

\( = 3x(x – 2)\)

(Critical values occur at) \(x = 0,{\text{ }}x = 2\)     (A1)

so \(f\) decreasing on \(x \in ]0,{\text{ }}2[\;\;\;({\text{or }}0 < x < 2)\)     A1

[4 marks]

a.

\(f”(x) = 6x – 6\)     (A1)

setting \(f”(x) = 0\)     M1

\( \Rightarrow x = 1\)

coordinate is \((1,{\text{ }}2)\)     A1

[3 marks]

Total [7 marks]

b.

Examiners report

[N/A]

a.

[N/A]

b.

Question

Consider the function \(f\) defined by \(f(x) = {x^2} – {a^2},{\text{ }}x \in \mathbb{R}\) where \(a\) is a positive constant.

The function \(g\) is defined by \(g(x) = x\sqrt {f(x)} \) for \(\left| x \right| > a\).

Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

\(y = f(x)\);

[2]
a.i.

Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

\(y = \frac{1}{{f(x)}}\);

[4]
a.ii.

Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

\(y = \left| {\frac{1}{{f(x)}}} \right|\).

[2]
a.iii.

Find \(\int {f(x)\cos x{\text{d}}x} \).

[5]
b.

By finding \(g'(x)\) explain why \(g\) is an increasing function.

[4]
c.
Answer/Explanation

Markscheme

A1 for correct shape

A1 for correct \(x\) and \(y\) intercepts and minimum point

[2 marks]

a.i.

A1 for correct shape

A1 for correct vertical asymptotes

A1 for correct implied horizontal asymptote

A1 for correct maximum point

[??? marks]

a.ii.

A1 for reflecting negative branch from (ii) in the \(x\)-axis

A1 for correctly labelled minimum point

[2 marks]

a.iii.

EITHER

attempt at integration by parts     (M1)

\(\int {({x^2} – {a^2})\cos x{\text{d}}x = ({x^2} – {a^2})\sin x – \int {2x\sin x{\text{d}}x} } \)     A1A1

\( = ({x^2} – {a^2})\sin x – 2\left[ { – x\cos x + \int {\cos x{\text{d}}x} } \right]\)     A1

\( = ({x^2} – {a^2})\sin x + 2x\cos – 2\sin x + c\)     A1

OR

\(\int {({x^2} – {a^2})\cos x{\text{d}}x = \int {{x^2}\cos x{\text{d}}x – \int {{a^2}\cos x{\text{d}}x} } } \)

attempt at integration by parts     (M1)

\(\int {{x^2}\cos x{\text{d}}x = {x^2}\sin x – \int {2x\sin x{\text{d}}x} } \)     A1A1

\( = {x^2}\sin x – 2\left[ { – x\cos x + \int {\cos x{\text{d}}x} } \right]\)     A1

\( = {x^2}\sin x + 2x\cos x – 2\sin x\)

\( – \int {{a^2}\cos x{\text{d}}x = – {a^2}\sin x} \)

\(\int {({x^2} – {a^2})\cos x{\text{d}}x = ({x^2} – {a^2})\sin x + 2x\cos x – 2\sin x + c} \)     A1

[5 marks]

b.

\(g(x) = x{({x^2} – {a^2})^{\frac{1}{2}}}\)

\(g'(x) = {({x^2} – {a^2})^{\frac{1}{2}}} + \frac{1}{2}x{({x^2} – {a^2})^{ – \frac{1}{2}}}(2x)\)     M1A1A1

Note:     Method mark is for differentiating the product. Award A1 for each correct term.

\(g'(x) = {({x^2} – {a^2})^{\frac{1}{2}}} + {x^2}{({x^2} – {a^2})^{ – \frac{1}{2}}}\)

both parts of the expression are positive hence \(g'(x)\) is positive     R1

and therefore \(g\) is an increasing function (for \(\left| x \right| > a\))     AG

[4 marks]

c.

Examiners report

[N/A]

a.i.

[N/A]

a.ii.

[N/A]

a.iii.

[N/A]

b.

[N/A]

c.
Scroll to Top