Home / IB DP Math AI Topic SL 3.4 :length of an arc; area of a sector. SL Paper 2

IB DP Math AI Topic SL 3.4 :length of an arc; area of a sector. SL Paper 2

Question 2. [Maximum mark: 17]

The diagram below shows a circular clock face with centre O. The clock’s minute hand has a length of 10 cm. The clock’s hour hand has a length of 6 cm.

At 4:00 pm the endpoint of the minute hand is at point A and the endpoint of the hour hand is at point B.

a. Find the size of angle AÔB in degrees. [2]

b.  Find the distance between points A and B. [3]

Between 4:00 pm and 4:13 pm, the endpoint of the minute hand rotates through an angle, θ ,

from point A to point C. This is illustrated in the diagram.

                     

c.  Find the size of angle θ in degrees. [2]

d.  Calculate the length of arc AC. [2]

e.  Calculate the area of the shaded sector, AOC. [2]

A second clock is illustrated in the diagram below. The clock face has radius 10 cm with minute and hour hands both of length 10 cm. The time shown is 6:00 am. The bottom of the clock face is located 3 cm above a horizontal bookshelf.

                               

Write down the height of the endpoint of the minute hand above the bookshelf

at 6:00 am. [1]

f.    The height, h centimetres, of the endpoint of the minute hand above the bookshelf is modelled by the function

h(θ ) = 10 cosθ + 13 , θ ≥ 0 ,

where θ is the angle rotated by the minute hand from 6:00 am.

g.   Find the value of h when θ = 160° . [2]

The height, g centimetres, of the endpoint of the hour hand above the bookshelf is modelled by the function

  g(θ ) = -10 cos \((\frac{\Theta }{12})\) + 13 , θ ≥ 0 ,

where θ is the angle in degrees rotated by the minute hand from 6:00 am.

h.   Write down the amplitude of g(θ ) . [1]

The endpoints of the minute hand and hour hand meet when θ = k .

Find the smallest possible value of k . [2]

Answer/Explanation

(a) \(4\times \frac{360°\cdot }{12}OR 4\times 30° = 120°\)

(b)  cosine rule \(AB^{2}= 10^{2}+6^{2}-2\times 10\times 6\times cos (120°)\)

\(AB= 14cm\)

(c) \(\Theta = 13\times 6= 78°\)

(d) arc length l= \(\frac{78}{360} \times 2\times \pi \times 10\) OR

\(l= \frac{13\pi }{30}\times 10 = 13.6cm(13.6135…,4.33\pi ,\frac{13\pi }{3})\)

(e) Area of a sector \(A= \frac{78}{360}\times \pi \times 10^{2}\) OR \( l=\frac{1}{2}\times \frac{13\pi }{30}\times 10^{2}= 68.1cm^{2}(68.0678…,21.7\pi ,\frac{65\pi }{3}\)

(f) 23

(g) correct substitution h =10cos (160 ) + 13 = 3.60 cm (3.60307…)

(h) 10 (i) EITHER 10\(\times cos(\Theta )+13 = -10\times cos(\frac{\Theta }{12})\)+13

OR THEN k =196° (196.363…)

Question


      A sector of a circle, centre O and radius 4.5m, is shown in the following diagram.

                     

     (a) (i) Find the angle AÔB.
           (ii) Find the area of the shaded segment.                                                                                                                                   [8]
     A square field with side 8m has a goat tied to a post in the centre by a rope such that the
     goat can reach all parts of the field up to 4.5m from the post.

                           

      (b) (i) Find the area of a circle with radius 4.5m.
             (ii) Find the area of the field that can be reached by the goat.                                                                                                 [5]
      Let V be the volume of grass eaten by the goat, in cubic metres, and t be the length of time,
      in hours, that the goat has been in the field.
      The goat eats grass at the rate of \(\frac{dV}{dt}=0.3te^{-t}\).

      (c) Find the value of t at which the goat is eating grass at the greatest rate.                                                                                [2]

Answer/Explanation

Ans

4. (a) (i)  \(\left ( \frac{1}{2}A\hat{O}B= \right )\arccos \left ( \frac{4}{4.5} \right )=27.266…\)                                              (M1)(A1)

                  AOB 54.532… ≈ 54.5 o = ( 0.951764…≈ 0.952  radians)                                                                                                           A1

Note: Other methods may be seen; award (M1)(A1) for use of a correct trigonometric
            method to find an appropriate angle and then A1 for the correct answer.

            (ii) finding area of triangle
                   EITHER
                    area of triangle \(=\frac{1}{2}\times 4.5^{2}\times \sin (54.532…)\)                                                                              (M1)

Note: Award M1 for correct substitution into formula.

                   =  8.24621…≈ 8.25 m2

                   OR

                    \(AB=2\times \sqrt{4.5^{2}-4^{2}}=4.1231…\)                                                                                                                       (M1)

                     \(area\ triangle=\frac{4.12131…\times 4}{2}\)                                                                                                                         (A1)

                    =  8.24621…≈ 8.25 m2

                    EITHER 

                     \(area\ of \ sector=\frac{54.532…}{360}\times \pi \times 4.5^{2}\)                                                                                   (M1)

                      =  9.63661… ≈ 9.64 m2

                      OR

                      \(area\ of \ sector=\frac{1}{2}\times 0.9517641.. \times 4.5^{2}\)                                                                                       (M1)

                      =  9.63661… ≈ 9.64 m2                                                                                                                                                                                  (A1)

                      THEN

                      area of segment = 9.63661… 8.24621… −
                      =1.39 m2 (1.39040…)                                                                                                                                                                             A1
                                                                                                                                                                                                                                          [8 marks]

      (b) (i) 2 π× 4.5                                                                                                                                                                                                         (M1)
                  63.6  m2 (63.6172… m2 )                                                                                                                                                                             A1
             (ii) METHOD 1

                             

            4 1.39040… × (5.56160)                                                                                                                                                                                   (A1)
            subtraction of four segments from area of circle                                                                                                                                        (M1)
            = 58.1 m2 (58.055…)                                                                                                                                                                                           A1
     METHOD 2

         \(4(0.5\times 4.5^{2} \times\sin 54.532… )+4\left ( \frac{35.4679}{360}\times\pi \times 4.5^{2} \right )\)                            (M1)

          = 32.9845… + 25.0707                                                                                                                                                                                        (A1)
          = 58.1 m2 (58.055 …)                                                                                                                                                                                            A1
                                                                                                                                                                                                                                            [5 marks]

    (c) sketch of \(\frac{dV}{dt}\) OR \(\frac{dV}{dt}=0.110363…\) OR attempt to find where \(\frac{d^{2}V}{dt^{2}}=0\)         (M1)

         t  =1 hour                                                                                                                                                                                                                   A1
                                                                                                                                                                                                                                             [2 marks]
                                                                                                                                                                                                                                             [Total 15 marks]

Question

The interior of a circle of radius 2 cm is divided into an infinite number of sectors. The areas of these sectors form a geometric sequence with common ratio k. The angle of the first sector is \(\theta \) radians.

(a)     Show that \(\theta = 2\pi (1 – k)\).

(b)     The perimeter of the third sector is half the perimeter of the first sector.

Find the value of k and of \(\theta \).

Answer/Explanation

Markscheme

(a)     the area of the first sector is \(\frac{1}{2}{2^2}\theta \)     (A1)

the sequence of areas is \(2\theta ,{\text{ }}2k\theta ,{\text{ }}2{k^2}\theta \ldots \)     (A1)

the sum of these areas is \(2\theta (1 + k + {k^2} + \ldots )\)     (M1)

\( = \frac{{2\theta }}{{1 – k}} = 4\pi \)     M1A1

hence \(\theta = 2\pi (1 – k)\)     AG

Note: Accept solutions where candidates deal with angles instead of area.

 

[5 marks]

 

(b)     the perimeter of the first sector is \(4 + 2\theta \)     (A1)

the perimeter of the third sector is \(4 + 2{k^2}\theta \)     (A1)

the given condition is \(4 + 2{k^2}\theta = 2 + \theta \)     M1

which simplifies to \(2 = \theta (1 – 2{k^2})\)     A1

eliminating \(\theta \), obtain cubic in k: \(\pi (1 – k)(1 – 2{k^2}) – 1 = 0\)     A1

or equivalent

solve for k = 0.456 and then \(\theta = 3.42\)     A1A1

[7 marks]

Total [12 marks]

Examiners report

This was a disappointingly answered question.

Part(a) – Many candidates correctly assumed that the areas of the sectors were proportional to their angles, but did not actually state that fact.

Part(b) – Few candidates seem to know what the term ‘perimeter’ means.

Question

The radius of the circle with centre C is 7 cm and the radius of the circle with centre D is 5 cm. If the length of the chord [AB] is 9 cm, find the area of the shaded region enclosed by the two arcs AB.

 

Answer/Explanation

Markscheme

 

\(\alpha = 2\arcsin \left( {\frac{{4.5}}{7}} \right)\) (\( \Rightarrow \alpha = 1.396… = 80.010^\circ …\))     M1(A1)

\(\beta = 2\arcsin \left( {\frac{{4.5}}{5}} \right)\) (\( \Rightarrow \beta = 2.239… = 128.31^\circ …\))     (A1)

Note: Allow use of cosine rule.

area \(P = \frac{1}{2} \times {7^2} \times \left( {\alpha – \sin \alpha } \right) = 10.08…\)     M1(A1)

area \(Q = \frac{1}{2} \times {5^2} \times \left( {\beta – \sin \beta } \right) = 18.18…\)     (A1)

Note: The M1 is for an attempt at area of sector minus area of triangle.

Note: The use of degrees correctly converted is acceptable.

area = 28.3 (cm2)     A1

[7 marks]

Examiners report

Whilst most candidates were able to make the correct construction to solve the problem some candidates seemed unable to find the area of a segment. In a number of cases candidates used degrees in a formula that required radians. There were a number of candidates who followed a completely correct method but due to premature approximation were unable to obtain a correct solution.

Scroll to Top