IB DP Math AI: Topic: SL 4.8: Binomial distribution.: IB style Questions SL Paper 1

Question

 A factory produces bags of sugar with a labelled weight of 500g. The weights of the bags
are normally distributed with a mean of 500g and a standard deviation of 3g.
(a) Write down the percentage of bags that weigh more than 500 g.
A bag that weighs less than 495g is rejected by the factory for being underweight.
(b) Find the probability that a randomly chosen bag is rejected for being underweight.
A bag that weighs more than k grams is rejected by the factory for being overweight.
The factory rejects 2% of bags for being overweight.
(c) Find the value of k .

Answer/Explanation

Ans:

(a) 50%
(b) 0.0478 (0.0477903…, 4.78%)
(c) P(X<k)=0.98 OR P(X>k)=0.02
506g  (506.161…)

Question

A biased coin is weighted such that the probability of obtaining a head is \(\frac{4}{7}\). The coin is tossed 6 times and X denotes the number of heads observed. Find the value of the ratio \(\frac{{{\text{P}}(X = 3)}}{{{\text{P}}(X = 2)}}\).

Answer/Explanation

Markscheme

recognition of \(X \sim {\text{B}}\left( {6,\frac{4}{7}} \right)\)     (M1)

\({\text{P}}(X = 3) = \left( {\begin{array}{*{20}{c}}
  6 \\
  3
\end{array}} \right){\left( {\frac{4}{7}} \right)^3}{\left( {\frac{3}{7}} \right)^3}\left( { = 20 \times \frac{{{4^3} \times {3^3}}}{{{7^6}}}} \right)\)     A1

\({\text{P}}(X = 2) = \left( {\begin{array}{*{20}{c}}
  6 \\
  3
\end{array}} \right){\left( {\frac{4}{7}} \right)^2}{\left( {\frac{3}{7}} \right)^4}\left( { = 15 \times \frac{{{4^2} \times 34}}{{{7^6}}}} \right)\)     A1

\(\frac{{{\text{P}}(X = 3)}}{{{\text{P}}(X = 2)}} = \frac{{80}}{{45}}\left( { = \frac{{16}}{9}} \right)\)     A1

[4 marks]

Examiners report

Many correct answers were seen to this and the majority of candidates recognised the need to use a Binomial distribution. A number of candidates, although finding the correct expressions for \({\text{P}}(X = 3)\) and \({\text{P}}(X = 4)\), were unable to perform the required simplification.

Question

On Saturday, Alfred and Beatrice play 6 different games against each other. In each game, one of the two wins. The probability that Alfred wins any one of these games is \(\frac{2}{3}\).

Show that the probability that Alfred wins exactly 4 of the games is \(\frac{{80}}{{243}}\).

[3]
a.

(i)     Explain why the total number of possible outcomes for the results of the 6 games is 64.

(ii)     By expanding \({(1 + x)^6}\) and choosing a suitable value for x, prove

\[64 = \left( {\begin{array}{*{20}{c}}
  6 \\
  0
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  2
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  3
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  5
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  6
\end{array}} \right)\]

(iii)     State the meaning of this equality in the context of the 6 games played.

[4]
b.

The following day Alfred and Beatrice play the 6 games again. Assume that the probability that Alfred wins any one of these games is still \(\frac{2}{3}\).

(i)     Find an expression for the probability Alfred wins 4 games on the first day and 2 on the second day. Give your answer in the form \({\left( {\begin{array}{*{20}{c}}
  6 \\
  r
\end{array}} \right)^2}{\left( {\frac{2}{3}} \right)^s}{\left( {\frac{1}{3}} \right)^t}\) where the values of r, s and t are to be found.

(ii)     Using your answer to (c) (i) and 6 similar expressions write down the probability that Alfred wins a total of 6 games over the two days as the sum of 7 probabilities.

(iii)     Hence prove that \(\left( {\begin{array}{*{20}{c}}
  {12} \\
  6
\end{array}} \right) = {\left( {\begin{array}{*{20}{c}}
  6 \\
  0
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  1
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  2
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  3
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  5
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  6
\end{array}} \right)^2}\).

[9]
c.

Alfred and Beatrice play n games. Let A denote the number of games Alfred wins. The expected value of A can be written as \({\text{E}}(A) = \sum\limits_{r = 0}^n {r\left( {\begin{array}{*{20}{c}}
  n \\
  r
\end{array}} \right)} \frac{{{a^r}}}{{{b^n}}}\).

(i)     Find the values of a and b.

(ii)     By differentiating the expansion of \({(1 + x)^n}\), prove that the expected number of games Alfred wins is \(\frac{{2n}}{3}\).

[6]
d.
Answer/Explanation

Markscheme

\(B\left( {6,\frac{2}{3}} \right)\)     (M1)

\(p(4) = \left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right){\left( {\frac{2}{3}} \right)^4}{\left( {\frac{1}{3}} \right)^2}\)     A1

\(\left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right) = 15\)     A1

\( = 15 \times \frac{{{2^4}}}{{{3^6}}} = \frac{{80}}{{243}}\)     AG

[3 marks]

a.

(i)     2 outcomes for each of the 6 games or \({2^6} = 64\)     R1

 

(ii)     \({(1 + x)^6} = \left( {\begin{array}{*{20}{c}}
  6 \\
  0
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  1
\end{array}} \right)x + \left( {\begin{array}{*{20}{c}}
  6 \\
  2
\end{array}} \right){x^2} + \left( {\begin{array}{*{20}{c}}
  6 \\
  3
\end{array}} \right){x^3} + \left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right){x^4} + \left( {\begin{array}{*{20}{c}}
  6 \\
  5
\end{array}} \right){x^5} + \left( {\begin{array}{*{20}{c}}
  6 \\
  6
\end{array}} \right){x^6}\)     A1

Note: Accept \(^n{C_r}\) notation or \(1 + 6x + 15{x^2} + 20{x^3} + 15{x^4} + 6{x^5} + {x^6}\)

setting x = 1 in both sides of the expression     R1

Note: Do not award R1 if the right hand side is not in the correct form.

 

\(64 = \left( {\begin{array}{*{20}{c}}
  6 \\
  0
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  2
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  3
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  5
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  6 \\
  6
\end{array}} \right)\)     AG

 

(iii)     the total number of outcomes = number of ways Alfred can win no games, plus the number of ways he can win one game etc.     R1 

[4 marks]

b.

(i)     Let \({\text{P}}(x,{\text{ }}y)\) be the probability that Alfred wins x games on the first day and y on the second.

\({\text{P(4, 2)}} = \left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right) \times {\left( {\frac{2}{3}} \right)^4} \times {\left( {\frac{1}{3}} \right)^2} \times \left( {\begin{array}{*{20}{c}}
  6 \\
  2
\end{array}} \right) \times {\left( {\frac{2}{3}} \right)^2} \times {\left( {\frac{1}{3}} \right)^4}\)     M1A1

\({\left( {\begin{array}{*{20}{c}}
  6 \\
  2
\end{array}} \right)^2}{\left( {\frac{2}{3}} \right)^6}{\left( {\frac{1}{3}} \right)^6}\) or \({\left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right)^2}{\left( {\frac{2}{3}} \right)^6}{\left( {\frac{1}{3}} \right)^6}\)     A1

r = 2 or 4, s = t = 6

 

(ii)     P(Total = 6) =

P(0, 6) + P(1, 5) + P(2, 4) + P(3, 3) + P(4, 2) + P(5, 1) + P(6, 0)     (M1)

\( = {\left( {\begin{array}{*{20}{c}}
  6 \\
  0
\end{array}} \right)^2}{\left( {\frac{2}{3}} \right)^6}{\left( {\frac{1}{3}} \right)^6} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  1
\end{array}} \right)^2}{\left( {\frac{2}{3}} \right)^6}{\left( {\frac{1}{3}} \right)^6} + … + {\left( {\begin{array}{*{20}{c}}
  6 \\
  6
\end{array}} \right)^2}{\left( {\frac{2}{3}} \right)^6}{\left( {\frac{1}{3}} \right)^6}\)     A2

\( = \frac{{{2^6}}}{{{3^{12}}}}\left( {{{\left( {\begin{array}{*{20}{c}}
  6 \\
  0
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  1
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  2
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  3
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  5
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  6
\end{array}} \right)}^2}} \right)\)

Note: Accept any valid sum of 7 probabilities.

 

(iii)     use of \(\left( {\begin{array}{*{20}{c}}
  6 \\
  i
\end{array}} \right) = \left( {\begin{array}{*{20}{l}}
  6 \\
  {6 – i}
\end{array}} \right)\)     (M1)

(can be used either here or in (c)(ii))

P(wins 6 out of 12) \( = \left( {\begin{array}{*{20}{c}}
  {12} \\
  6
\end{array}} \right) \times {\left( {\frac{2}{3}} \right)^6} \times {\left( {\frac{1}{3}} \right)^6} = \frac{{{2^6}}}{{{3^{12}}}}\left( {\begin{array}{*{20}{c}}
  {12} \\
  6
\end{array}} \right)\)     A1

\( = \frac{{{2^6}}}{{{3^{12}}}}\left( {{{\left( {\begin{array}{*{20}{c}}
  6 \\
  0
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  1
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  2
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  3
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  5
\end{array}} \right)}^2} + {{\left( {\begin{array}{*{20}{c}}
  6 \\
  6
\end{array}} \right)}^2}} \right) = \frac{{{2^6}}}{{{3^{12}}}}\left( {\begin{array}{*{20}{c}}
  {12} \\
  6
\end{array}} \right)\)     A1

therefore \({\left( {\begin{array}{*{20}{c}}
  6 \\
  0
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  1
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  2
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  3
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  4
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  5
\end{array}} \right)^2} + {\left( {\begin{array}{*{20}{c}}
  6 \\
  6
\end{array}} \right)^2} = \left( {\begin{array}{*{20}{c}}
  {12} \\
  6
\end{array}} \right)\)     AG

[9 marks]

c.

(i)     \({\text{E}}(A) = \sum\limits_{r = 0}^n {r\left( {\begin{array}{*{20}{c}}
  n \\
  r
\end{array}} \right)} {\left( {\frac{2}{3}} \right)^r}{\left( {\frac{1}{3}} \right)^{n – r}} = \sum\limits_{r = 0}^n {r\left( {\begin{array}{*{20}{c}}
  n \\
  r
\end{array}} \right)} \frac{{{2^r}}}{{{3^n}}}\)

(a = 2, b = 3)     M1A1

Note: M0A0 for a = 2, b = 3 without any method.

(ii)     \(n{(1 + x)^{n – 1}} = \sum\limits_{r = 1}^n {\left( {\begin{array}{*{20}{c}}
  n \\
  r
\end{array}} \right)} r{x^{r – 1}}\)     A1A1

(sigma notation not necessary)

(if sigma notation used also allow lower limit to be r = 0)

let x = 2     M1

\(n{3^{n – 1}} = \sum\limits_{r = 1}^n {\left( {\begin{array}{*{20}{c}}
  n \\
  r
\end{array}} \right)} r{2^{r – 1}}\)

multiply by 2 and divide by \({3^n}\)     (M1)

\(\frac{{2n}}{3} = \sum\limits_{r = 1}^n {\left( {\begin{array}{*{20}{c}}
  n \\
  r
\end{array}} \right)} r\frac{{{2^r}}}{{{3^n}}}\left( { = \sum\limits_{r = 0}^n {\left( {\begin{array}{*{20}{c}}
  n \\
  r
\end{array}} \right)} \frac{{{2^r}}}{{{3^n}}}} \right)\)     AG

[6 marks]

d.

Examiners report

This question linked the binomial distribution with binomial expansion and coefficients and was generally well done.

(a) Candidates need to be aware how to work out binomial coefficients without a calculator

a.

This question linked the binomial distribution with binomial expansion and coefficients and was generally well done.

(b) (ii) A surprising number of candidates chose to work out the values of all the binomial coefficients (or use Pascal’s triangle) to make a total of 64 rather than simply putting 1 into the left hand side of the expression.

b.

This question linked the binomial distribution with binomial expansion and coefficients and was generally well done.

c.

This question linked the binomial distribution with binomial expansion and coefficients and was generally well done.

(d) This was poorly done. Candidates were not able to manipulate expressions given using sigma notation.

d.

Question

A biased coin is tossed five times. The probability of obtaining a head in any one throw is \(p\).

Let \(X\) be the number of heads obtained.

Find, in terms of \(p\), an expression for \({\text{P}}(X = 4)\).

[2]
a.

(i)     Determine the value of \(p\) for which \({\text{P}}(X = 4)\) is a maximum.

(ii)     For this value of \(p\), determine the expected number of heads.

[6]
b.
Answer/Explanation

Markscheme

\(X \sim {\text{B}}(5,{\text{ }}p)\)    (M1)

\({\text{P}}(X = 4) = \left( {\begin{array}{*{20}{c}} 5 \\ 4 \end{array}} \right){p^4}(1 – p)\) (or equivalent)     A1

[2 marks]

a.

(i)     \(\frac{{\text{d}}}{{{\text{d}}p}}(5{p^4} – 5{p^5}) = 20{p^3} – 25{p^4}\)     M1A1

\(5{p^3}(4 – 5p) = 0 \Rightarrow p = \frac{4}{5}\)    M1A1

Note:     Do not award the final A1 if \(p = 0\) is included in the answer.

(ii)     \({\text{E}}(X) = np = 5\left( {\frac{4}{5}} \right)\)     (M1)

\( = 4\)    A1

[6 marks]

b.

Examiners report

This question was generally very well done and posed few problems except for the weakest candidates.

a.

This question was generally very well done and posed few problems except for the weakest candidates.

b.

Question

A biased coin is tossed five times. The probability of obtaining a head in any one throw is \(p\).

Let \(X\) be the number of heads obtained.

Find, in terms of \(p\), an expression for \({\text{P}}(X = 4)\).

[2]
a.

(i)     Determine the value of \(p\) for which \({\text{P}}(X = 4)\) is a maximum.

(ii)     For this value of \(p\), determine the expected number of heads.

[6]
b.
Answer/Explanation

Markscheme

\(X \sim {\text{B}}(5,{\text{ }}p)\)    (M1)

\({\text{P}}(X = 4) = \left( {\begin{array}{*{20}{c}} 5 \\ 4 \end{array}} \right){p^4}(1 – p)\) (or equivalent)     A1

[2 marks]

a.

(i)     \(\frac{{\text{d}}}{{{\text{d}}p}}(5{p^4} – 5{p^5}) = 20{p^3} – 25{p^4}\)     M1A1

\(5{p^3}(4 – 5p) = 0 \Rightarrow p = \frac{4}{5}\)    M1A1

Note:     Do not award the final A1 if \(p = 0\) is included in the answer.

(ii)     \({\text{E}}(X) = np = 5\left( {\frac{4}{5}} \right)\)     (M1)

\( = 4\)    A1

[6 marks]

b.

Examiners report

This question was generally very well done and posed few problems except for the weakest candidates.

a.

This question was generally very well done and posed few problems except for the weakest candidates.

b.
Scroll to Top