Home / IB DP Math AI: Topic SL 5.11: Indefinite integral: IB style Questions HL Paper 2

IB DP Math AI: Topic SL 5.11: Indefinite integral: IB style Questions HL Paper 2

Question

The function f has a derivative given by a positive constant.  \(f'(x) = \frac{1}{x(k-x)}\) \(x\in \mathbb{R},x\neq 0,x\neq k\) where \(k\) is a positive constant.

  1. The expression for f ′(x) can be written in the form \(\frac{a}{x}+\frac{b}{k-x}\) , where \(a,b\in \mathbb{R}\)

    Find a and b in terms of k. [3]

  2. Hence, find an expression for f (x) . [3]

    Consider P , the population of a colony of ants, which has an initial value of 1200.

    The rate of change of the population can be modelled by the differential equation \(\frac{dP}{dt}=\frac{p(k-p)}{5k}\)

    where t is the time measured in days, t ≥ 0, and k is the upper bound for the population.

  3. By solving the differential equation, show that  \(P =\frac{1200k}{(k-120)e^{\frac{t}{5}}+1200}\)

    At t = 10 the population of the colony has doubled in size from its initial value.

  4. Find the value of k , giving your answer correct to four significant figures. [3]

  5. Find the value of t when the rate of change of the population is at its maximum. [3]

▶️Answer/Explanation

Ans:

(a)

\(\frac{1}{x(k-x)}= \frac{a}{x}+ \frac{b}{k-x}\) 

a (k-x)+ bx = 1 

attempt to compare coefficients OR substitute x = k  and  x = o and solve

a = \(\frac{1}{k} \) and \( b = \frac{1}{k }\)

\(f ‘(x)= \frac{1}{kx}+ \frac{1}{k(k-x)}\)

(b)

attempt to integrate their \(\frac{a}{x}+ \frac{b}{k-x}\)

\(f(x)=\frac{1}{k}\int (\frac{1}{x}+ \frac{1}{k-x})dx\)

= \(\frac{1}{k}(ln |x| – ln | k-x |)+c\)

\(\frac{1}{k}ln |\frac{x}{k-x}|+c\)

(c) attempt to separate variables and integrate both sides

5k \(\int \frac{1}{p(k-p)}dp = \int 1 dt\)

5 (ln p – ln (k-P))= t+ c

EITHER 

attempt to substitute t = o , P = 1200 into an equation involving c

c= 5( ln 1200 – ln (k-1200))

= 5ln \(\frac{1200}{k-1200}\)

5 (ln p- ln (k-p ))= t+5 \((ln 1200-ln (k-1200))\)

\(ln (\frac{p(k-1200)}{1200(k-p)})=\frac{t}{5}\)

\(\frac{p(k-1200)}{1200(k-p)}= e ^{^{\frac{t}{5}}}\)

OR

ln \(\frac{p}{k-p}= \frac{t+ c }{5 }\)

\(\frac{p }{k-p }= Ae ^{\frac{t}{5}}\)

attempt to substitute t = 0, p = 1200

\(\frac{1200}{k-1200}= A\)

\(\frac{p }{k-p }= \frac{1200 e^{\frac{t}{5}}}{k- 1200}\)

THEN

attempt to rearrange and isolate  p

\(pk – 1200p = 1200ke ^{\frac{t}{5}}- 1200 pe ^{\frac{t}{5 }}\)

OR \(pke ^{\frac{-t}{5}}-1200pe^{\frac{-t}{5}}= 1200k – 1200p\)

OR

\(\frac{K}{P}-1 = \frac{K-1200}{1200e^{\frac{t}{5}}} \)

p = \(\frac{1200k}{(k-1200)e ^{\frac{t}{5}}+1200}\)

(d)

attempt to substitute t = 10 p = 2400

2400=\(\frac{1200k}{(k-1200)e^{-2}+ 1200 }\)

k = 2845.34..

k= 2845

(e)

attempt to find the maximum of the first derivative graph OR zero of the second derivative graph OR that p =\(\frac{k}{2}(=1422.67..)\)

t =1.57814…

=1.58 (days)

Question

The graph of a function f passes through the point (ln4, 20).

Given that f ′(x) = 6e2x , find f (x).

▶️Answer/Explanation

Ans:

evidence of integration

eg \(\int f'(x)dx, \int 6e^{2x}\)

correct integration (accept missing + c)

eg \(\frac{1}{2}\times 6e^{2x}, 3e^{2x}\) +c

substituting initial condition into their integrated expression (must have +c )

eg \(3e^{2\times ln4}\)+c = 20

correct application of log (\(a^{b})\)= b log a rule (seen anywhere)

eg 2ln4 = ln16, eln16, ln42

correct application of  elna= a rule (seen anywhere)

eg \(e^{ln16}= 16, (e^{ln4})^{2}=4^{2}\)

correct working

eg \(3\times 16+c= 20, 3\times (4^{2})+c= 20, c=20 c=-28\)

\(f(x)=3e^{2x}- 28\)

Question

Let \(f(x) = \int {\frac{{12}}{{2x – 5}}} {\rm{d}}x\) , \(x > \frac{5}{2}\) . The graph of \(f\) passes through (\(4\), \(0\)) .

Find \(f(x)\) .

▶️Answer/Explanation

Markscheme

attempt to integrate which involves \(\ln \)     (M1)

eg   \(\ln (2x – 5)\) , \(12\ln 2x – 5\) , \(\ln 2x\)

correct expression (accept absence of \(C\))

eg   \(12\ln (2x – 5)\frac{1}{2} + C\) , \(6\ln (2x – 5)\)     A2

attempt to substitute (4,0) into their integrated     (M1)

eg \(0 = 6\ln (2 \times 4 – 5)\) , \(0 = 6\ln (8 – 5) + C\)

\(C = – 6\ln 3\)     (A1)

\(f(x) = 6\ln (2x – 5) – 6\ln 3\) \(\left( { = 6\ln \left( {\frac{{2x – 5}}{3}} \right)} \right)\) (accept \(6\ln (2x – 5) – \ln {3^6}\) )     A1     N5

Note: Exception to the FT rule. Allow full FT on incorrect integration which must involve \(\ln\).

[6 marks]

Question

A function f (x) has derivative f ′(x) = 3x2 + 18x. The graph of f has an x-intercept at x = −1.

a.Find f (x).[6]

b.The graph of f has a point of inflexion at x = p. Find p.[4]

c.Find the values of x for which the graph of f is concave-down.[3]

▶️Answer/Explanation

Markscheme

evidence of integration       (M1)

eg  \(\int {f’\left( x \right)} \)

correct integration (accept absence of C)       (A1)(A1)

eg  \({x^3} + \frac{{18}}{2}{x^2} + C,\,\,{x^3} + 9{x^2}\)

attempt to substitute x = −1 into their = 0 (must have C)      M1

eg  \({\left( { – 1} \right)^3} + 9{\left( { – 1} \right)^2} + C = 0,\,\, – 1 + 9 + C = 0\)

Note: Award M0 if they substitute into original or differentiated function.

correct working       (A1)

eg  \(8 + C = 0,\,\,\,C =  – 8\)

\(f\left( x \right) = {x^3} + 9{x^2} – 8\)      A1 N5

[6 marks]

a.

METHOD 1 (using 2nd derivative)

recognizing that f” = 0 (seen anywhere)      M1

correct expression for f”      (A1)

eg   6x + 18, 6p + 18

correct working      (A1)

6+ 18 = 0

p = −3       A1 N3

METHOD 1 (using 1st derivative)

recognizing the vertex of f′ is needed       (M2)

eg   \( – \frac{b}{{2a}}\) (must be clear this is for f′)

correct substitution      (A1)

eg   \(\frac{{ – 18}}{{2 \times 3}}\)

p = −3       A1 N3

[4 marks]

b.

valid attempt to use f” (x) to determine concavity      (M1)

eg   f” (x) < 0, f” (−2), f” (−4),  6x + 18 ≤ 0 

correct working       (A1)

eg   6x + 18 < 0, f” (−2) = 6, f” (−4) = −6 

f concave down for x < −3 (do not accept ≤ −3)       A1 N2

[3 marks]

c.

Question

Let \(f\left( x \right) = 6{x^2} – 3x\). The graph of \(f\) is shown in the following diagram.

a.Find \(\int {\left( {6{x^2} – 3x} \right){\text{d}}x} \).[2]

b.Find the area of the region enclosed by the graph of \(f\), the x-axis and the lines x = 1 and x = 2 .[4]

▶️Answer/Explanation

Markscheme

\(2{x^3} – \frac{{3{x^2}}}{2} + c\,\,\,\left( {{\text{accept}}\,\,\frac{{6{x^3}}}{3} – \frac{{3{x^2}}}{2} + c} \right)\)     A1A1 N2

Notes: Award A1A0 for both correct terms if +c is omitted.
Award A1A0 for one correct term eg \(2{x^3} + c\).
Award A1A0 if both terms are correct, but candidate attempts further working to solve for c.

[2 marks]

a.

substitution of limits or function (A1)

eg  \(\int_1^2 {f\left( x \right)} \,{\text{d}}x,\,\,\left[ {2{x^3} – \frac{{3{x^2}}}{2}} \right]_1^2\)

substituting limits into their integrated function and subtracting     (M1)

eg  \(\frac{{6 \times {2^3}}}{3} – \frac{{3 \times {2^2}}}{2} – \left( {\frac{{6 \times {1^3}}}{3} + \frac{{3 \times {1^2}}}{2}} \right)\)

Note: Award M0 if substituted into original function.

correct working      (A1)

eg  \(\frac{{6 \times 8}}{3} – \frac{{3 \times 4}}{2} – \frac{{6 \times 1}}{3} + \frac{{3 \times 1}}{2},\,\,\left( {16 – 6} \right) – \left( {2 – \frac{3}{2}} \right)\)

\(\frac{{19}}{2}\)     A1 N3

[4 marks]

b.
Scroll to Top