Home / IB Mathematics AHL 5.12 area of the region enclosed by a curve -AI HL Paper 2- Exam Style Questions

IB Mathematics AHL 5.12 area of the region enclosed by a curve -AI HL Paper 2- Exam Style Questions- New Syllabus

Question

Adesh is designing a glass. The glass has an inner surface and an outer surface. Part of the cross section of his design is shown in the following graph, where the shaded region represents the glass. The two surfaces meet at the top of the glass. \( 1 \)unit represents \( 1 \)\( cm\).

Glass Cross Section

The inner surface is modelled by
\( f(x) = \frac{1}{2}x^3 + 1 \quad \text{for } 0 \leq x \leq p \)

The outer surface is modelled by
\( g(x) = \begin{cases} 0 & \text{for } 0 \leq x < 1, \\ (x-1)^4 & \text{for } 1 \leq x \leq p \end{cases} \)

(a) Find the value of \( p \).

The glass design is finished by rotating the shaded region in the diagram through \( 360^\circ \) about the \( y \)-axis.

(b) Find the volume of liquid that can be contained inside the finished glass.

(c) Find the volume of the region between the two surfaces of the finished glass.

▶️ Answer/Explanation
Markscheme

(a)
    Set inner and outer surfaces equal at \( x = p \)
    \( \frac{1}{2}p^3 + 1 = (p-1)^4 \)
    Rearrange: \( \frac{1}{2}p^3 – (p-1)^4 + 1 = 0 \)
    Solve numerically or graphically, \( p \approx 2.91082\ldots \)
    To 3 s.f.: \( p = 2.91 \) cm
Result:
\( 2.91 \) cm

(b)
    Volume of liquid is rotation of inner surface about \( y \)-axis
    Express \( x \) in terms of \( y \): \( y = \frac{1}{2}x^3 + 1 \)
    \( \frac{1}{2}x^3 = y – 1 \)
    \( x^3 = 2(y – 1) \)
    \( x = \sqrt[3]{2(y – 1)} \)
    Radius squared: \( x^2 = (2(y – 1))^{\frac{2}{3}} \)
    Upper limit: \( y \) at \( x = p = 2.91 \), \( y = \frac{1}{2}(2.91)^3 + 1 \)
    \( (2.91)^3 \approx 24.645 \), \( \frac{1}{2} \times 24.645 \approx 12.3225 \), \( y \approx 12.3225 + 1 = 13.3225 \)
    Integral: \( V = \pi \int_{1}^{13.3225\ldots} (2(y – 1))^{\frac{2}{3}} \, dy \)
    Approximate: \( V \approx 196.946\ldots \) cm³
    To 3 s.f.: \( V = 197 \) cm³
Result:
\( 197 \) cm³

(c)
    Volume between surfaces is rotation of outer minus inner
    Express \( x \) in terms of \( y \) for outer: \( y = (x – 1)^4 \)
    \( (x – 1)^4 = y \)
    \( x – 1 = y^{\frac{1}{4}} \)
    \( x = y^{\frac{1}{4}} + 1 \)
    Radius squared: \( x^2 = (y^{\frac{1}{4}} + 1)^2 \)
    Integral: \( V_{\text{outer}} = \pi \int_{0}^{13.3225\ldots} (y^{\frac{1}{4}} + 1)^2 \, dy \)
    Approximate: \( V_{\text{outer}} \approx 271.87668\ldots \) cm³
    Subtract inner volume: \( 271.87668\ldots – 196.946\ldots \approx 74.93033\ldots \) cm³
    To 3 s.f.: \( V = 74.9 \) cm³
    Accept any value rounding to 75 cm³
Result:
\( 75 \) cm³

Scroll to Top