IB DP Math MAA SL : IB Style Mock Exams – Set 1 Paper 1

Question

[Maximum mark: 7]
Consider the functions \(f(x)=\sqrt{3}sin x + cos x\) where 0 ≤ x ≤ π and g(x) = 2x where x ∈ R.
(a) Find ( f • g)(x). 
(b) Solve the equation ( f • g)(x) = 2 cos 2x where 0 ≤ x ≤ π.

Answer/Explanation

Ans: (a) ( f • g)(x) = f(2x)
\(f(2x)=\sqrt{3}sin2x+cos 2x\)

(b) \(\sqrt{3}sin2x+cos 2x = 2cos 2x\)

\(\sqrt{3}sin2x=cos 2x\)

recognising to use tan or cot

\(tan 2x = \frac{1}{\sqrt{3}}OR cot 2x = \sqrt{3}\)    (values may be seen in right triangle)

\(\left ( arctan \left ( \frac{1}{\sqrt{3}} \right )= \right )\frac{\pi }{6}\)  (seen anywhere) (accept degrees)

\(2x = \frac{\pi }{6},\frac{7\pi }{6}\)

\(x = \frac{\pi }{12},\frac{7\pi }{12}\)

Note: Do not award the final A1 if any additional solutions are seen.
Award A1A0 for correct answers in degrees.
Award A0A0 for correct answers in degrees with additional values.

Question

Find the least positive value of $x$ for which $\cos \left(\frac{x}{2}+\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}}$.

Answer/Explanation

 determines $\frac{\pi}{4}$ (or $45^{\circ}$ ) as the first quadrant (reference) angle attempts to solve $\frac{x}{2}+\frac{\pi}{3}=\frac{\pi}{4}$

Note: Award $\boldsymbol{M 1}$ for attempting to solve $\frac{x}{2}+\frac{\pi}{3}=\frac{\pi}{4}, \frac{7 \pi}{4}(, \ldots)$

$\frac{x}{2}+\frac{\pi}{3}=\frac{\pi}{4} \Rightarrow x<0$ and so $\frac{\pi}{4}$ is rejected

$\begin{aligned} & \frac{x}{2}+\frac{\pi}{3}=2 \pi-\frac{\pi}{4}\left(=\frac{7 \pi}{4}\right) \\ & x=\frac{17 \pi}{6} \quad \text { (must be in radians) }\end{aligned}$

Scroll to Top