# IBDP Maths AI: Topic SL 5.2: Increasing and decreasing function: IB style Questions SL Paper 1

## Question

The function $$f(x)$$ is such that $$f'(x) < 0$$ for $$1 < x < 4$$. At the point $${\text{P}}(4{\text{, }}2)$$ on the graph of $$f(x)$$ the gradient is zero.

Write down the equation of the tangent to the graph of $$f(x)$$ at $${\text{P}}$$.[2]

a.

State whether $$f(4)$$ is greater than, equal to or less than $$f(2)$$.[2]

b.

Given that $$f(x)$$ is increasing for $$4 \leqslant x < 7$$, what can you say about the point $${\text{P}}$$?[2]

c.

## Markscheme

$$y = 2$$. Â  Â Â (A1)(A1) Â  Â  (C2)

Note: Award (A1) for $$y = \ldots$$, (A1) for $$2$$.
Accept $$f(x) = 2$$ and $$y = 0x + 2$$

a.

Less (than).Â Â Â Â  (A2)Â Â Â Â  (C2)[2 marks]

b.

Local minimum (accept minimum, smallest or equivalent) Â  Â  (A2) Â  Â  (C2)

Note: Award (A1) for stationary or turning point mentioned.
No mark is awarded for $${\text{gradient}} = 0$$ as this is given in the question.

c.

## Question

The table given below describes the behaviour of f â€²(x), the derivative function of f (x), in the domain âˆ’4 < x < 2.

State whether f (0) is greater than, less than or equal to f (âˆ’2). Give a reason for your answer.[2]

a.

The point P(âˆ’2, 3) lies on the graph of f (x).

Write down the equation of the tangent to the graph of f (x) at the point P.[2]

b.

The point P(âˆ’2, 3) lies on the graph of f (x).

From the information given about f â€²(x), state whether the point (âˆ’2, 3) is a maximum, a minimum or neither. Give a reason for your answer.[2]

c.

## Markscheme

greater than Â  Â  (A1)

Gradient between x = âˆ’2 and x = 0 is positive.Â Â Â Â  (R1)

OR

The function is increased between these points or equivalent. Â  Â  (R1) Â  Â  (C2)

Note: Accept a sketch. Do not award (A1)(R0).[2 marks]

a.

y = 3 Â  Â  (A1)(A1) Â  Â  (C2)

Note: Award (A1) for y = a constant, (A1) for 3.[2 marks]

b.

minimumÂ Â Â Â  (A1)

Gradient is negative to the left and positive to the right or equivalent.Â Â Â Â  (R1) Â  Â  (C2)Â

Note: Accept a sketch. Do not award (A1)(R0).[2 marks]

c.

## Question

$f(x) = \frac{1}{3}{x^3} + 2{x^2} – 12x + 3$

Find $$f'(x)$$ .[3]

a.

Find the interval of $$x$$ for which $$f(x)$$ is decreasing.[3]

b.

## Markscheme

$$f'(x) = {x^2} + 4x – 12$$ Â  Â  (A1)(A1)(A1)Â Â Â Â  (C3)

Notes: Award (A1) for each term. Award at most (A1)(A1)(A0) if other terms are seen.[3 marks]

a.

$$– 6 \leqslant x \leqslant 2$$ Â Â Â  ORÂ Â Â Â  $$– 6 < x < 2$$ Â  Â  (A1)(ft)(A1)(ft)(A1)Â Â Â Â  (C3)

Notes: Award (A1)(ft) for $$– 6$$, (A1)(ft) for $$2$$, (A1) for consistent use of strict ($$<$$) or weak ($$\leqslant$$) inequalities. Final (A1) for correct interval notation (accept alternative forms). This can only be awarded when the left hand side of the inequality is less than the right hand side of the inequality. Follow through from their solutions to their $$f'(x) = 0$$ only if working seen.[3 marks]

b.

## Question

Consider the graph of the function $$f(x) = {x^3} + 2{x^2} – 5$$.

Label the local maximum as $${\text{A}}$$ on the graph.[1]

a.

Label the local minimum as B on the graph.[1]

b.

Write down the interval where $$f'(x) < 0$$.[1]

c.

Draw the tangent to the curve at $$x = 1$$ on the graph.[1]

d.

Write down the equation of the tangent at $$x = 1$$.[2]

e.

## Markscheme

Â

correct label on graph Â  Â  (A1) Â  Â  (C1)[1 mark]

a.

correct label on graph Â  Â  (A1) Â  Â  (C1)[1 mark]

b.

$$– 1.33 < x < 0$$ Â  $$\left( { – \frac{4}{3} < x < 0} \right)$$ Â  Â  (A1) Â  Â  (C1)[1 mark]

c.

Â

tangent drawn at $$x = 1$$ on graph Â  Â  (A1) Â  Â  (C1)[1 mark]

d.

$$y = 7x – 9$$ Â  Â  (A1)(A1) Â  Â  (C2)

Notes:Â Award (A1) for $$7$$, (A1) for $$-9$$.

If answer not given as an equation award at most (A1)(A0).[2 marks]

e.

## Question

Consider the graph of the function $$y = f(x)$$ defined below.

Write down all the labelled points on the curve

that are local maximum points;[1]

a.

where the function attains its least value;[1]

b.

where the function attains its greatest value;[1]

c.

where the gradient of the tangent to the curve is positive;[1]

d.

where $$f(x) > 0$$ and $$f'(x) < 0$$ .[2]

e.

## Markscheme

B, FÂ Â Â  Â (C1)

a.

HÂ Â Â Â  (C1)

b.

FÂ Â Â Â  (C1)

c.

A, EÂ Â Â Â  (C1)

d.

CÂ Â Â Â  (C2)

e.

[MAI 5.2-5.3] BASIC DERIVATIVES – TANGENT AND NORMAL-lala

### Question

[Maximum mark: 20]
Differentiate the following functions:

Ans.

Â

### Question

[Maximum mark: 6]
Let $$f(x)=5x^{2}+3$$
(a) Find $${f}'(x)$$.
(b) Find the gradient of the curve $$y = f (x)$$ at $$x = 1$$.
(c) Find the coordinates of the point where the gradient is 20.

Ans.

(a) $${f}'(x)=10x$$
(b) $${f}'(1)=10$$
(c) $${f}'(x)=20\Leftrightarrow 10x=20\Leftrightarrow x=2$$, $$y=23$$, thus (5,23)

### Question

[Maximum mark: 6]
Let $$f(x)=4\sqrt{x}$$
(a) Find $${f}'(x)$$.
(b) Find the gradient of the curve $$y = f (x)$$ at $$x = 1$$.
(c) Find the coordinates of the point where the gradient is 1.

Ans.

(a) $${f}'(x)=\frac{2}{\sqrt{x}}$$
(b) $${f}'(1)=2$$
(c) $${f}'(x)=1\Leftrightarrow \frac{2}{\sqrt{x}}=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4$$, $$y=8$$, thus (4,8)

### Question

[Maximum mark: 4]
Let $$f(x)=x^{3}-2x^{2}-1$$.
(a) Find $${f}'(x)$$.
(b) Find the gradient of the curve of $$f (x)$$ at the point (2, â€“1).

Ans.

(a) $${f}'(x)=3x^{2}-4x-0=3x^{2}-4x$$
(b) Gradient=$${f}'(2)=3×4-4×2=4$$

### Question

[Maximum mark: 6]
Given the function $$f(x)=x^{2}-3bx+(c+2)$$, determine the values of b and c such that
$$f (1) = 0$$ and $${f}'(3) = 0$$ .

Ans.

$${f}'(x)=2x-3b$$
$$f(1)=0\Leftrightarrow 1^{2}-3b+c+2=0\Leftrightarrow -3b+c+3=0$$
$${f}'(3)=0\Leftrightarrow 6-3b=0\Rightarrow 3b=6\Rightarrow b=2$$
$$-6+c+3=0\Rightarrow c=3$$

Â

### Question

[Maximum mark: 7]
Given the following values at $$x = 1$$

(a) Find the value of each function below at $$x = 1$$.
(i) $$y = f (x) + g(x)$$
(ii) $$y = 2 f (x) + 3g(x)$$
(iii) $$y=f(x)+5x^{2}$$
(b) Calculate the derivatives of the following functions at $$x = 1$$
(i) $$y = f (x) + g(x)$$
(ii) $$y = 2 f (x) + 3g(x)$$
(iii) $$y=f(x)+5x^{2}$$

Ans.

(a) At $$x = 1$$
(i) $$y = f (1) + g(1) = 2 + 3 = 5$$
(ii) $$y = 2 f (1) + 3g(1) = 4 + 9 = 13$$
(iii) $$y = f (1) + 5 = 2 + 5 = 7$$

(b)Â  Â (i) $$\frac{dy}{dx} = {f}'(x)+{g}'(x)$$.At $$x=1,\frac{dy}{dx}={f}'(1)+{g}'(1)=4+5=9$$

(ii) $$\frac{dy}{dx} = 2{f}'(x)+3{g}'(x)$$.At $$x=1,\frac{dy}{dx}=2{f}'(1)+3{g}'(1)=8+15=23$$

(iii) $$\frac{dy}{dx}={f}'(x)+10x$$. At $$x=1, \frac{dy}{dx}={f}'(1)+10=4+10=14$$

Â

### Question

[Maximum mark: 4]
The graph of the function $$y = f (x)$$ , 0 â‰¤ x â‰¤ 4 , is shown below.

(a) Write down the value ofÂ  (i) $$f (1)$$Â  Â  Â  Â  Â  Â  Â  (ii) $$f (3)$$
(b) Write down the value ofÂ  (i) $${f}'(1)$$Â  Â  Â  Â  Â  (ii) $${f}'(3)$$

Ans.

(a)Â  (i) 1Â  Â  Â  Â  Â  Â  Â  (ii) 0.5

(b)Â  (i) 0Â  Â  Â  Â  Â  Â  Â (ii) $$-\frac{1}{2}$$

Â

### Question

[Maximum mark: 6]
Part of the graph of the periodic function $$f$$ is shown below. The domain of $$f$$ is
0 â‰¤ x â‰¤ 15 and the period is 3.

(a) FindÂ  Â (i) $$f (2)$$Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  (ii) $${f}'(6.5)$$ Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â (iii) $${f}'(14)$$

(b) How many solutions are there to the equation $$f (x) = 1$$ over the given domain?

Ans.

(a)Â  (i)Â  1
(ii)Â  2
(iii) $${f}'(14)={f}'(2)(or \;{f}'(5)\;or\;{f}'(8))=-1$$

(b) There are five repeated periods of the graph, each with two solutions,
ie number of solutions is 5 Ã— 2 = 10

### Question

[Maximum mark: 8]
Let $$f(x)=2x^{2}-12x+10$$.

(a) Find $${f}'(x)$$.
(b) Find the equations of the tangent line and the normal line at $$x = 2$$ .
(c) Find the equations of the tangent line and the normal line at $$x = 3$$.

Ans.

$$f(x)=2x^{2}-12x+10$$

(a) $${f}'(x)=4x-12$$
(b)Â  At $$x=2, y=6$$, Point (2,6)

$$m_{T}=-4$$, $$m_{N}=\frac{1}{4}$$
Tangent line: $$y+6=-4(x-2)$$Â  Â  Â  Â  Â  Â  Â $$(i.e.\; y=-4x+2)$$
Normal line: $$y+6=\frac{1}{4}(x-2)$$Â  Â  Â  Â  Â  Â  $$(i.e.\; y=\frac{1}{4}x-\frac{13}{2})$$

(c) At $$x = 3$$,Â  $$y =- 8$$ , Point (3, â€“8)
$$m_{T}=0$$
Tangent line: $$y = – 8$$ , Normal line: $$x = 3$$

### Question

[Maximum mark: 9]
Let $$f(x)=2x^{2}-12x+10$$.

(a) Find$${f}'(x)$$ .
(b) The line L1 with equation $$y = 4x – 22$$ is tangent to the curve.
(i) Write down the gradient of the line L1.
(ii) Find the coordinates of the point where the line L1 touches the curve.
(c) The line L2 is tangent to the curve and parallel to the line $$y = 8x + 3$$.
(i) Write down the gradient of the line L2.
(ii) Find the coordinates of the point where the line L2 touches the curve.
(iii) Find the equation of L2 in the form $$y = mx + c$$ .

Ans.

$$f(x)=2x^{2}-12x+10$$

(a) $${f}'(x)=4x-12$$
(b) (i) $$m_{1}=4$$
(ii) $$4x-12=4\Leftrightarrow x=4$$, thus $$y=-6$$. Point (4,-6)
(c) (i) $$m_{2}=8$$
(ii) $$4x-12=8\Leftrightarrow x=5$$, thus $$y=0$$. Point (5,0)
(iii) $$y-0=8(x-5)\Leftrightarrow y=8x-40$$

### Question

[Maximum mark: 6]
Find the equation of the tangent line and the equation of the normal to the curve with
equation$$y=x^{3}+1$$ at the point (1,2).

Ans.

$$y=x^{3}+1$$Â  Â  Â  Â  Â  Â  Â  Â $$\frac{dy}{dx}=3x^{2}$$

AtÂ  Â $$x = 1$$,Â  Â $$m_{T}=3$$, $$m_{N}=-\frac{1}{3}$$

Equation of tangent: $$y-2=3(x-1)\Rightarrow y=3x-1$$

Equation of normal: $$y-2=-\frac{1}{3}(x-1)$$ (OR $$x+3y-7=0$$ OR $$y=-\frac{1}{3}x+2\frac{1}{3})$$

### Question

[Maximum mark: 6]
Consider the function $$f(x)=4x^{3}+2x$$ . Find the equation of the normal to the curve of
$$f$$ at the point where $$x = 1$$.

Ans.

$${f}'(x)=12x^{2}+2$$

When $$x = 1$$, $$f (1)$$ = 6, Point (1,6)
When $$x = 1$$,$${f}'(1)$$=14, $$m_{T}=14$$

Equation is $$y-6=-\frac{1}{14}(x-1)\left ( y=-\frac{1}{14}x+\frac{85}{14},y=-0.0714x+6.07\right )$$

### Question

[Maximum mark: 4]
Find the coordinates of the point on the graph of $$y=x^{2}-x$$ at which the tangent is
parallel to the line $$y = 5x$$ .

Ans.

$$y=x^{2}-x$$Â  Â  Â  Â  Â  Â $$\frac{dy}{dx}=2x-1$$

Line parallel toÂ  $$y=5x\Rightarrow 2x-1=5\Rightarrow x=3$$ so $$y=6, Point (3,6)$$

### Question

[Maximum mark: 6]
Let $$f(x)=kx^{4}$$ . The point P(1, k) lies on the curve of $$f$$ . At P, the normal to the curve is
parallel to $$y=-\frac{1}{8}x$$ . Find the value of $$k$$.

Ans.

$${f}'(x)=4kx^{3}$$
$$m_{N}=-\frac{1}{8}$$, thus $$m_{T}=8$$
$$4kx^{3}=8\Rightarrow kx^{3}=2$$
substituting $$x$$=1, $$k$$=2

### Question

[Maximum mark: 6]
Consider the function $$f:x \mapsto 3x^2-5x+k$$.
The equation of the tangent to the graph of $$f$$ at $$x = p$$ is $$y = 7x – 9$$ .
(a) Write down$${f}'(x)$$ .
(b) Find the value ofÂ  Â  (i) $$p$$ ;Â  Â  Â  Â  Â  Â  (ii) $$k$$ .

Ans.

(a)$${f}'(x)=6x-5$$
(b)$${f}'(p)=7\Rightarrow 6p-5=7\Rightarrow p=2$$
(c) Setting (2)=$$f(2)$$
$$k+2=5\Rightarrow k=3$$

### Question

[Maximum mark: 6]
Consider the curve with equation $$f(x)=px^{2}+qx$$ , where $$p$$ and $$q$$ are constants.
The point A(1, 3) lies on the curve. The tangent to the curve at A has gradient 8.
Find the value of $$p$$ and of $$q$$ .

Ans.

(a) $$f(1)=3\Rightarrow p+q=3$$
$${f}'(x)=2px+q$$
$${f}'(1)=8\Rightarrow 2p+q=8$$
$$p=5,q=-2$$

Â

### Question

[Maximum mark: 6]
Consider the tangent to the curve $$y=x^{3}+4x^{2}+x-6$$ .
(a) Find the equation of this tangent at the point where $$x = – 1$$.
(b) Find the coordinates of the point where this tangent meets the curve again.

Ans.

(a) METHOD 1 (directly by GDC)
The equation of the tangent isÂ  $$y = â€“4x â€“ 8$$.
METHOD 2
For $$x=-1, y=-4$$ and $$\frac{dy}{dx}=3x^{2}+8x+1, m_{T}=-4$$

Therefore, the tangent equation is $$y+4=-4(x+1)\Rightarrow y=-4x-8$$.

(b) This tangent meets the curve when $$-4x-8=x^{3}+4x^{2}+x-6$$
The required point of intersection is (â€“2, 0).

### Question

[Maximum mark: 6]
The line $$y = 16x – 9$$ is a tangent to the curve $$y=2x^{3}+ax^{2}+bx-9$$ at the point (1,7).
Find the values of $$a$$ and $$b$$ .

Ans.

For the curve, $$y = 7$$ when $$x = 1 â‡’ a + b = 14$$, and

$$\frac{dy}{dx}=6x^{2}+2ax+b=16$$ when $$x=1\Rightarrow 2a+b=10$$.

Solving gives $$a$$ = â€“4 and $$b$$ = 18.

### Question

[Maximum mark: 11]
The following diagram shows part of the graph of a quadratic function, with equation in
the form $$y = (x – p)(x – q)$$ , where $$p,q\in \mathbb{Z}$$.

(a) (i) Write down the value of $$p$$ and of $$q$$ .
(ii) Write down the equation of the axis of symmetry of the curve.
(b) Find the equation of the function in the form $$y=(x-h)^{2}+k$$ , where $$h,k\in \mathbb{Z}$$.
(c) Find $$\frac{dy}{dx}$$
(d) Let T be the tangent to the curve at the point (0, 5). Find the equation of T.

Ans.

(a) (i) $$p = 1, q = 5$$ (or $$p = 5, q = 1$$)
(ii) $$x = 3$$ (must be an equation)
(b) $$y=(x-1)(x-5)=x^{2}-6x+5=(x-3)^{2}-4$$Â  Â  Â  Â  Â  Â ($$h$$=3,$$k$$=-4)
(c) $$\frac{dy}{dx}=2(x-3)(=2x-6)$$
(d) When x = 0, $$\frac{dy}{dx}=-6$$
$$y-5=-6(x-0)$$Â  Â  Â  Â  Â  Â ($$y$$=-6x+5 or equivalent)

### Question

[Maximum mark: 13]
The function $$f (x)$$ is defined as $$f(x)=-(x-h)^{2}+k$$. The diagram below shows part of
the graph of $$f (x)$$ . The maximum point on the curve is P (3, 2).

(a) Write down the value ofÂ  (i) $$h$$Â  Â  Â  Â  Â (ii) $$k$$
(b) Show that $$f (x)$$ can be written as $$f(x)=-x^{2}+6x-7$$.
(c) Find $${f}'(x)$$.
The point Q lies on the curve and has coordinates (4, 1). A straight line L, through Q,
is perpendicular to the tangent at Q.
(d) (i) Find the equation of L.
(ii) The line L intersects the curve again at R. Find the x-coordinate of R.

Ans.

(a) $$h = 3$$Â  Â  Â  Â $$k = 2$$

(b) $$f(x)=-(x-3)^{2}+2=-x^{2}+6x-9+2=-x^{2}+6x-7$$

(c) $${f}'(x)=-2x+6$$

(d)Â  Â (i) tangent gradient = – 2 gradient ofÂ  $$L=\frac{1}{2}$$

$$y-1=\frac{1}{2}(x-4)\Rightarrow y=\frac{1}{2}x-1$$

(ii) $$-x^{2}+6x-7=\frac{1}{2}x-1\Leftrightarrow 2x^{2}-11x+12=0\Leftrightarrow$$ $$x=1.5$$ or $$x=4$$ so $$x=1.5$$

(OR by GDC $$-x^{2}+6x-7=\frac{1}{2}x-1\Rightarrow x=1.5$$

### Question

[Maximum mark: 11]
The function $$f$$ is defined by $$f:x \mapsto -0.5x^{2}+2x+2.5$$.
(a) Write downÂ  Â  Â (i) $${f}'(x)$$ ;Â  Â  Â  Â  Â  Â  Â  (ii) $${f}'(0)$$ .
(b) Let N be the normal to the curve at the point where the graph intercepts the
y-axis. Show that the equation of N may be written as $$y=-0.5x+2.5$$.
Let $$g:x \mapsto -0.5x+2.5$$
(c) (i) Find the solutions of $$f (x) = g(x)$$
(ii) Hence find the coordinates of the other point of intersection of the normal
and the curve.

Ans.

(a) (i) $${f}'(x)=-x+2$$
(ii) $${f}'(0)=2$$

(b) Gradient of tangent at y-intercept = $${f}'(0)=2$$
â‡’ gradient of normal = $$\frac{1}{2}(=-0.5)$$
Therefore, equation of the normal is $$y$$ â€“ 2.5 = â€“0.5 ($$x$$ â€“ 0) â‡’ $$y$$ = â€“0.5x + 2.5

(c)Â  (i) $$-0.5x^{2}+2x+2.5=-0.5x+2.5\Rightarrow x=0$$ or $$x=5$$
(ii) Curve and normal intersect when $$x$$ = 0 or $$x$$ = 5
Other point is when $$x=5\Rightarrow y=-0.5(5)+2.5=0$$ (so other point (5, 0)

### Question

[Maximum mark: 15]
The equation of a curve may be written in the form $$y = a(x – p)(x – q)$$ . The curve
intersects the x-axis at A(â€“2, 0) and B(4, 0). The curve of $$y = f (x)$$ is shown in the
diagram below.

(a) (i) Write down the value of $$p$$ and of $$q$$.
(ii) Given that the point (6, 8) is on the curve, find the value of $$a$$.
(iii) Write the equation of the curve in the form $$y=ax^{2}+bx+c$$.
(b) A tangent is drawn to the curve at a point P. The gradient of this tangent is 7.
Find the coordinates of P.
(c) The line L passes through B(4, 0), and is normal to the curve at B.
(i) Find the equation of L.
(ii) Find the x-coordinate of the point where L intersects the curve again.

Ans.

(a) (i) $$p$$ =-2Â  Â $$q$$ = 4Â  (or $$p$$ = 4,Â  $$q$$ =-2 )

(ii)Â  $$y=a(x+2)(x-4)\Leftrightarrow 8=a(6+2)(6-4)\Leftrightarrow 8=16a\Leftrightarrow a=\frac{1}{2}$$

(iii) $$y=\frac{1}{2}(x+2)(x-4)\Rightarrow y=\frac{1}{2}(x^{2}-2x-8)\Rightarrow y=\frac{1}{2}x^{2}-x-4$$

(b) $$\frac{dy}{dx}=x-1$$

$$x – 1 = 7 â‡” x = 8, y = 20$$ (P is (8, 20))

(c) (i) when x = 4, $$m_{T}=4-1=3\Rightarrow m_{N}=-\frac{1}{3}$$
$$y-0=-\frac{1}{3}(x-4) \left ( y=-\frac{1}{3}x+\frac{4}{3} \right )$$

(ii) $$\frac{1}{2}x^{2}-x-4=-\frac{1}{3}x+\frac{4}{3}\Leftrightarrow x=-\frac{8}{3}$$ or $$x=4$$
$$x=-\frac{8}{3}(-2.67)$$

[Maximum mark: 9]
Let $$f(x)=x^{3}-3x^{2}-24x+1$$.
(a) Find $${f}'(x)$$
The tangents to the curve of $$f$$ at the points P and Q are parallel to the x -axis, where
P is to the left of Q.
(b) Calculate the coordinates of P and of Q.
Let N1 and N2 be the normals to the curve at P and Q respectively.
(c) Write down the coordinates of the points where
(i) the tangent at P intersects N2;
(ii) the tangent at Q intersects N1.

Ans.

(a) $${f}'(x)=3x^{2}-6x-24$$
(b) Tangents parallel to the x-axis mean maximum and minimum (see graph)
EITHER by GDC P(-2, 29) and Q(4, -79)
OR $${f}'(x)=0\Leftrightarrow 3x^{2}-6x-24=0\Leftrightarrow x=-2$$ or $$x=4$$
Coordinates are P(-2, 29) and Q(4, -79)
(c)

### Question

[Maximum mark: 10]
Consider the curve with equation $$f(x)=3x^{2}$$ . The point P(a,3a2 ) lies on the curve.
(a) Find the gradient to the curve at $$x = a$$.
(b) Show that the equation of the tangent line to the curve at point P(a,3a2 ) has
equation $$y=6ax-3a^{2}$$.
(c) Given that the tangent line passes through the point A(0,-3) find the possible
values of $$a$$ .
(d) Hence, find the equations of the tangent lines passing through A(0,-3).

Ans.

$$f(x)=3x^{2}$$

(a) $${f}'(x)=6x$$,Â  $${f}'(a)=6a$$
(b) At $$x=a$$, $$y=3a^{2}$$, $$m_{T}=6a$$
Tangent line: $$y-3a^{2}=6a(x-a)\Rightarrow y-3a^{2}=6ax-6a^{2}$$
$$\Rightarrow y=6ax-3a^{2}$$

(c) $$-3a^{2}=-3\Leftrightarrow a^{2}-1\Leftrightarrow a=\pm 1$$
(d) For $$a$$ = 1, the line is $$y = 6x – 3$$
For $$a$$ = -1, the line is $$y =- 6x – 3$$

Â

### Question

[Maximum mark: 10]
Consider the curve with equation $$f(x)=2x^{3}$$ .
(a) Find the equation of the tangent line to the curve at $$x = 1$$ .
(b) Find in terms of $$a$$ the equation of the tangent line to the curve at $$x = a$$.
(c) Hence, find the equation of the tangent line passing through the point A(0, 4) .

Ans.

$$f(x)=2x^{3}$$

(a) $${f}'(x)=6x^{2}$$
At $$x$$ = 1, $$y$$ = 2 , Point (1,2)
$$m_{T}=6$$
Tangent line: $$y – 2 = 6(x – 1)$$Â  Â  Â  (i.e. $$y = 6x – 4$$ )

(b) AtÂ  $$x=a$$,Â  $$y=2a^{3}$$ , Point (a,2a3 )
$$m_{T}=6a^{2}$$
Tangent line: $$y-2a^{3}=6a^{2}(x-a)\Rightarrow y-2a^{3}=6a^{2}x-6a^{3}$$
$$\Rightarrow y=6a^{2}x-4a^{3}$$

(c) $$-4a^{3}=4\Leftrightarrow a^{3}=-1\Leftrightarrow a=-1$$

Hence, the tangent line is $$y = 6x + 4$$

Â

[MAI 5.2-5.3] BASIC DERIVATIVES – TANGENT AND NORMAL-loyola

### Question

[Maximum mark: 20]
Differentiate the following functions

 Function Derivative $$y=7x^{3}+5x^{2}+2x+3$$ Â $$y=\frac{7}{3}x^{3}-\frac{5}{2}x^{2}\frac{1}{3}x+\frac{4}{5}$$ Â $$y=\frac{7x^{3}}{3}-\frac{5x^{2}}{2}+\frac{x}{3}x+\frac{4}{5}$$ Â $$y=1+\frac{2}{x}+\frac{3}{x^{2}}$$ Â $$y=\frac{1}{3}+\frac{2}{5x}+\frac{3}{7x^{2}}$$ Â $$y=x^{2}(1+\frac{2}{x}+\frac{3}{x^{2}})$$ Â $$y=\sqrt{x}+\sqrt[3]{x}$$ Â $$y=\sqrt{x^{3}}+\sqrt[3]{x^{2}}$$ Â $$y=\frac{1+x+x^{2}}{x^{2}}$$ Â $$y=\frac{3+5x+7x^{2}}{2x^{2}}$$ Â

### Question

[Maximum mark: 6]
Let f (x) = 5x2 + 3
(a) Find f ‘(x) . [2]
(b) Find the gradient of the curve y = f (x) at x = 1. [1]
(c) Find the coordinates of the point where the gradient is 20. [3]

(a) f ‘(x) = 10x
(b) f ‘(1) = 10
(c) f ‘(x) = 20â‡”10x = 20 â‡” x = 2 , y = 23, thus (5, 23)

### Question

[Maximum mark: 6]
Let $$f(x)=4\sqrt{x}$$

(a) Find f ‘(x) . [2]
(b) Find the gradient of the curve y = f (x) at x = 1 . [1]
(c) Find the coordinates of the point where the gradient is 1. [3]

(a) $$f'(x)=\frac{2}{\sqrt{x}}$$

(b) f ‘(1) = 2

(c) $$f'(x)=1\Leftrightarrow \frac{2}{\sqrt{x}}=1\Leftrightarrow \sqrt{x}=2\Leftrightarrow x=4, y=8, thus (4,8)$$

### Question

[Maximum mark: 4]

Let $$f(x)=x^{3}-2x^{2}-1$$

(a) Find f ‘(x) [2]
(b) Find the gradient of the curve of f (x) at the point (2, â€“1). [2]

(a) f ‘(x) = 3x2 â€“ 4x â€“ 0= 3x2 â€“ 4x
(b) Gradient = f ‘(2) = 3 Ã— 4 â€“ 4 Ã— 2= 4

### Question

[Maximum mark: 6]
Given the function 2 f (x) = x2 = 3bx + (c + 2) , determine the values of b and c such that f (1) = 0 and f ‘(3) = 0 .

f ‘(x) = 2x â€“ 3b
f (1) = 0 â‡” 12 â€“ 3b + c + 2 = 0 â‡” â€“ 3b + c + 3 = 0
f ‘(3) = 0 â‡” 6 â€“ 3b = 0 â‡’ 3b = 6 â‡’ b = 2
â€“ 6 + c + 3 = 0 â‡’ c = 3

### Question

[Maximum mark: 7]
Given the following values at x =1

(a) Find the value of each function below at x ï€½ 1.
(i) y = f (x) + g(x)
(ii) y = 2 f (x) + 3g(x)
(iii)Â  y = f (x) ï€« 5x2

(b) Calculate the derivatives of the following functions at x =1
(i) y = f (x) + g(x)
(ii) y + 2 f (x) + 3g(x)
(iii) y = f (x) + 5x2

(a) At x =1
(i) y = f (1) + g(1) = 2 + 3 = 5
(ii) y = 2 f (1) + 3g(1) = 4 + 9 =13
(iii) y = f (1) + 5 = 2 + 5 = 7

(b)Â  Â (i)Â  $$\frac{dy}{dx}=f'(x)+g'(x)$$ At x=1, $$\frac{dy}{dx}=f'(1)+g'(1)=4+5=9$$

(ii) $$\frac{dy}{dx}=2f'(x)+3g'(x)$$Â  At x=1, $$\frac{dy}{dx}=2f'(1)+3g'(1)=8+15=23$$

(iii) $$\frac{dy}{dx}=2f'(x)+10x$$Â  Â At x=1, $$\frac{dy}{dx}=f'(1)+10=4+10=14$$

### Question

[Maximum mark: 4]
The graph of the function y = f (x) , 0 â‰¤ x â‰¤ 4 , is shown below.

(a) Write down the value ofÂ  Â  Â  Â (i) f (1)Â  Â  Â  Â  Â  Â  Â  Â  Â (ii) f (3)
(b) Write down the value ofÂ  Â  Â  Â (i) f ‘(1)Â  Â  Â  Â  Â  Â  Â  Â  (ii) f ‘(3)

(a)Â  Â (i) 1Â  Â  Â  Â  (ii) 0.5
(b)Â  Â (i) 0Â  Â  Â  Â (ii) $$-\frac{1}{2}$$

### Question

[Maximum mark: 6]
Part of the graph of the periodic functionÂ  fÂ  is shown below. The domain ofÂ  fÂ  is
0 â‰¤ x â‰¤15 and the period is 3.

(a) FindÂ  Â  Â  Â  (i) f (2)Â  Â  Â  Â  Â (ii) f ‘(6.5)Â  Â  Â  Â  Â  Â  Â (iii) f ‘(14)
(b) How many solutions are there to the equation f (x) =1 over the given domain?

(a)Â  Â  (i) 1
(ii) 2
(iii) f ‘(14) = f ‘(2) (or f ‘(5) or f ‘(8)= â€“1
(b) There are five repeated periods of the graph, each with two solutions,
ie number of solutions is 5 Ã— 2 =10

### Question

[Maximum mark: 8]
Let f (x) = 2x2Â  – 12 x + 10
(a) Find f ‘(x) . [1]
(b) Find the equations of the tangent line and the normal line at x = 2 . [4]
(c) Find the equations of the tangent line and the normal line at x = 3. [3]

f (x) = 2x2 – 12x + 10
(a) f ‘(x) = 4x -12
(b) At x = 2 , y = 6 , Point (2,6)
mTÂ = -4, mN = $$\frac{1}{4}$$
Tangent line: y + 6 = -4(x – 2)Â  Â  Â  (i.e.Â  Â  y = -4x + 2 )
Normal line: y + 6 =Â  $$\frac{1}{4}$$ (x-2)Â  Â  Â (i.e.Â  $$y=\frac{1}{4}\times -\frac{13}{2}$$

(a) At x = 3, y = -8 , Point (3, â€“8)
mT = 0
Tangent line: y = -8 ,Â  Â  Â Normal line: x = 3

### Question

[Maximum mark: 9]
Let f (x ) = 2x2Â  – 12x +10
(a) Find f ‘(x) . [1]
(b) The line L1 with equation y = 4x – 22 is tangent to the curve.
(i) Write down the gradient of the line L1.
(ii) Find the coordinates of the point where the line L1 touches the curve. [3]
(c) The line L2 is tangent to the curve and parallel to the line y = 8x + 3.
(i) Write down the gradient of the line L2.
(ii) Find the coordinates of the point where the line L2 touches the curve.
(iii) Find the equation of L2 in the form y = mx + c . [5]

f (x) = 2x2 – 12 x +10
(a) f ‘(x) = 4x -12
(b) (i)Â  m1 = 4
(ii) 4x – 12 = 4 â‡” x = 4 , thus y = -6 . Point (4,-6)
(c) (i) m2 = 8
(ii) 4x -12 = 8â‡” x = 5 , thus y = 0. Point (5,0)
(iii) y – 0 = 8(x – 5) â‡” y = 8x – 40

### Question

[Maximum mark: 6]
Find the equation of the tangent line and the equation of the normal to the curve with equation y = x3 +1 at the point (1,2).

y = x3 + 1Â  Â  $$\frac{dy}{dx}=3x^{2}$$

At x = 1,Â  Â mT = 3 ,Â  Â mN = $$-\frac{1}{3}$$
Equation of tangent: y â€“ 2 = 3(x â€“ 1) â‡’ y = 3x â€“ 1

Equation of normal: y â€“ 2 = $$-\frac{1}{3}(x-1)$$Â  Â  (OR x + 3y â€“ 7 = 0Â  Â OR y = $$-\frac{1}{3}x+2\frac{1}{3})$$

### Question

[Maximum mark: 6]
Consider the functionÂ  f (x) = 4x3 + 2x . Find the equation of the normal to the curve ofÂ  fÂ  at the point where x =1.

f ‘(x) = 12x2 + 2
When x = 1, f (1) = 6, Point (1,6)
When x = 1, f ‘ (1) = 14,Â  mT =Â  14

Equation is y – 6 = $$-\frac{1}{14}(x-1)\left ( y=-\frac{1}{14}x+\frac{85}{14,}y=-0.0714x+6.07 \right )$$

### Question

[Maximum mark: 4]
Find the coordinates of the point on the graph of y = x2 – x at which the tangent is parallel to the line y = 5x .

$$y=x^{2}-x$$Â  Â  $$\frac{dy}{dx}=2x-1$$

Line parallel to y = 5x â‡’ 2x â€“ 1 = 5 â‡’Â  x = 3Â  Â  soÂ  Â  y = 6, Point (3, 6)

### Question

[Maximum mark: 6]
LetÂ  f (x) = kx4 . The point P(1, k) lies on the curve ofÂ  fÂ  . At P, the normal to the curve is parallel toÂ  $$y=-\frac{1}{8}x$$Â  . Find the value of k.

f â€²(x) = 4kx3
mN = $$-\frac{1}{8}$$ , thusÂ  mT = 8
4kx3 = 8 â‡’ kx3 = 2
substituting x = 1 , k = 2

### Question

[Maximum mark: 6]
Consider the function $$f:x \mapsto 3x^{2}-5x+k$$.
The equation of the tangent to the graph ofÂ  fÂ  atÂ  x = pÂ  Â isÂ  Â y = 7x – 9 .
(a) Write down f ‘(x) .
(b) Find the value ofÂ  Â  Â  Â  Â  (i)Â  Â p ;Â  Â  Â  Â  Â  Â (ii)Â  Â k .

(a) f ‘(x) = 6x – 5
(b) f ‘(p) = 7 â‡’ 6p -5 = 7 â‡’ p = 2
(c) Setting y (2) = f (2)
k + 2 = 5Â  â‡’ k = 3

### Question

[Maximum mark: 6]
Consider the curve with equation f (x) = px2 + qx , whereÂ  pÂ  andÂ  qÂ  are constants.
The point A(1, 3) lies on the curve. The tangent to the curve at A has gradient 8.
Find the value ofÂ  pÂ  and ofÂ  q

.

a) f (1) = 3 â‡’ p + q = 3
f â€²(x) = 2px + q
f â€²(1) = 8 â‡’ 2p + q = 8
p = 5, q = â€“2

### Question

[Maximum mark: 6]
Consider the tangent to the curve y = x3 + 4x2 + x – 6 .
(a) Find the equation of this tangent at the point where x = -1.
(b) Find the coordinates of the point where this tangent meets the curve again.

(a) METHOD 1 (directly by GDC)
The equation of the tangent is y = â€“4x â€“ 8.
METHOD 2
For x = -1, y = â€“4 andÂ  $$\frac{dy}{dx}=3x^{2}+8x+1, m_{T}=-4$$
Therefore, the tangent equation is y + 4 = -4(x +1) â‡’ y = â€“4x â€“ 8.
(b) This tangent meets the curve when â€“4x â€“ 8 = x3 + 4x2 + x â€“ 6
The required point of intersection is (â€“2, 0).

### Question

[Maximum mark: 6]
The line y =16x – 9 is a tangent to the curveÂ  y = 2x3 + ax + bx – 9 at the point (1,7). Find the values of a and b .

For the curve, y = 7 when x = 1 â‡’ a + b = 14, and
$$\frac{dy}{dx}$$ = 6x2 + 2ax + b = 16 when x = 1 â‡’ 2a + b = 10.
Solving gives a = â€“4 and b = 18.

### Question

[Maximum mark: 11]
The following diagram shows part of the graph of a quadratic function, with equation in the formÂ  $$y=(x-p)(x-q)$$, whereÂ  $$p,q\epsilon \mathbb{Z}$$

(a) (i) Write down the value of p and of q .
(ii) Write down the equation of the axis of symmetry of the curve. [3]
(b) Find the equation of the function in the formÂ  y = (x – h)2 + k , where h, k âˆˆ $$\mathbb{Z}$$Â . [2]
(c) Find $$\frac{dy}{dx}$$ [3]
(d) Let T be the tangent to the curve at the point (0, 5). Find the equation of T. [3]

(a) (i) p = 1, q = 5 (or p = 5, q = 1)
(ii) x = 3 (must be an equation)
(b) y = (x – 1)(x – 5) = x2 – 6x + 5 = (x – 3)2 – 4 (h = 3, k = -4)
(c) $$\frac{dy}{dx}$$ = 2 (x –Â  3) (= 2x – 6)
(d) When x = 0, $$\frac{dy}{dx}$$ = -6
y – 5 = -6(x – 0)Â  Â  Â  (y = -6x + 5 or equivalent)

### Question

[Maximum mark: 13]
The function f (x) is defined asÂ  f (x) = -(x – h)2 + k . The diagram below shows part of the graph of f (x) . The maximum point on the curve is P (3, 2).

(a) Write down the value ofÂ  Â  Â  (i) hÂ  Â  Â  Â  Â (ii) k [2]
(b) Show that f (x) can be written asÂ  f (x) = -x2 + 6x – 7 . [1]
(c) Find f ‘(x) . [2]
The point Q lies on the curve and has coordinates (4, 1). A straight line L, through Q, is perpendicular to the tangent at Q.
(d) (i) Find the equation of L.
(ii) The line L intersects the curve again at R. Find the x-coordinate of R. [8]

a) h = 3 k = 2
(b) f (x) = – (x – 3)2 + 2 = -x2 + 6x – 9 + 2 = -x2 + 6x – 7
(c) f ‘(x) = -2x + 6
(d) (i) tangent gradient = -2 gradient of L = $$\frac{1}{2}$$
$$y-1=\frac{1}{2}(x-4)\Rightarrow y=\frac{1}{2}x-1$$

(ii) $$-x+6x-7=\frac{1}{2}x-1\Leftrightarrow 2x^{2}-11x+12-0\Leftrightarrow x=1.5$$Â  or x=4Â  Â soÂ  x=1.5

### Question

[Maximum mark: 11]
The functionÂ  fÂ  is defined by $$f:x \mapsto – 0.5x^{2}+2x+2.5$$

(a) Write downÂ  Â  Â  Â  Â  (i) f ‘(x) ;Â  Â  Â  Â  Â  Â  Â  (ii) f ‘(0) . [2]
(b) Let N be the normal to the curve at the point where the graph intercepts the
y-axis. Show that the equation of N may be written as y = -0.5x + 2.5 .

LetÂ  $$g:x \mapsto – 0.5x+2.5$$

(c) (i) Find the solutions of f (x) = g(x)
(ii) Hence find the coordinates of the other point of intersection of the normal
and the curve. [6]

Â

(a) (i) f ‘(x) = â€“x + 2
(ii) f ‘(0) = 2
(b) Gradient of tangent at y-intercept = f ‘(0) = 2
â‡’ gradient of normal = $$\frac{1}{2}(=0.5)$$

Therefore, equation of the normal is y â€“ 2.5 = â€“0.5 (x â€“ 0) â‡’ y = â€“0.5x + 2.5

c) (i) â€“0.5x2 + 2x + 2.5 = â€“0.5x + 2.5 â‡’ x = 0Â  Â orÂ  Â x = 5
(ii) Curve and normal intersect when x = 0Â  Â orÂ  Â x = 5
Other point is when x = 5 â‡’ y = â€“0.5(5) + 2.5 = 0 (so other point (5, 0)

### Question

[Maximum mark: 15]
The equation of a curve may be written in the form y = a(x – p)(x – q) . The curve
intersects the x-axis at A(â€“2, 0) and B(4, 0). The curve of y = f (x) is shown in the
diagram below.

(i) Write down the value of p and of q.
(ii) Given that the point (6, 8) is on the curve, find the value of a.
(iii) Write the equation of the curve in the formÂ  y = ax2 + bx + c . [5]
(b) A tangent is drawn to the curve at a point P. The gradient of this tangent is 7.
Find the coordinates of P. [4]
(c) The line L passes through B(4, 0), and is normal to the curve at B.
(i) Find the equation of L.
(ii) Find the x-coordinate of the point where L intersects the curve again. [6]

(a) (i)Â  Â  Â p = -2Â  Â q = 4 (or p = 4, q = -2 )

(ii)Â  $$y=a(x+2)(x-4)\Leftrightarrow 8=a(6+2)(6-4)\Leftrightarrow 8=16a\Leftrightarrow a=\frac{1}{2}$$

(iii) $$y=\frac{1}{2}(x+2)(x-4)\Leftrightarrow y=\frac{1}{2}(x^{2}-2x-8)\frac{1}{2}x^{2}-x-4$$

(b) $$\frac{dy}{dx}=x-1$$

$$x-1=7\Leftrightarrow x=8, y=20 (P is (8, 20))$$

(c) (i) when x = 4, mT = 4 â€“ 1 = 3 â‡’ mN = $$-\frac{1}{3}$$

$$y-0=-\frac{1}{3}(x-4)\left ( y=-\frac{1}{3}x+\frac{4}{3} \right )$$

(ii) $$\frac{1}{2}x^{2}-x-4=-\frac{1}{3}x+\frac{4}{3}\Leftrightarrow x=-\frac{8}{3}$$Â  orÂ  x=4

$$x=-\frac{8}{3}(-2.67)$$

### Question

[Maximum mark: 9]
Let f (x) = x3 – 24x +1.
(a) Find f ‘(x) [2]
The tangents to the curve of f at the points P and Q are parallel to the x -axis, where P is to the left of Q.
(b) Calculate the coordinates of P and of Q. [3]
Let N1 and N2 be the normals to the curve at P and Q respectively.
(c) Write down the coordinates of the points where
(i) the tangent at P intersects N2;
(ii) the tangent at Q intersects N1. [4]

(a) f’ (x) = 3x2 – 6x – 24
(b) Tangents parallel to the x-axis mean maximum and minimum (see graph)
EITHER by GDC P(-2, 29) and Q(4, -79)
OR f’ (x) = 0 â‡” 3x2 – 6x – 24 = 0 â‡” x = -2 or x = 4
Coordinates are P(-2, 29) and Q(4, -79)

(c)

(i)Â  Â  Â (4, 29)Â  Â  Â  Â  Â  Â  Â  Â  Â  (ii) (-2, -79)

### Question

[Maximum mark: 10]
Consider the curve with equation f (x) = 3x2 . The point P 2 (a,3a ) lies on the curve.
(a) Find the gradient to the curve at x = a . [2]
(b) Show that the equation of the tangent line to the curve at point P (a, 3a2 ) has
equation y = 6ax – 3a2 . [3]
(c) Given that the tangent line passes through the point A(0,-3) find the possible
values of a . [3]
(d) Hence, find the equations of the tangent lines passing through A(0,- 3) . [2]

f (x) = 3x2
(a) f ‘(x) = 6x , f ‘(a) = 6a
(b) At x = a,Â  y = 3a2 ,Â  mT = 6a
Tangent line: y – 3a2 = 6a(x – a) â‡’Â  y -3a2 = 6ax – 6a2

â‡’ y = 6ax – 3a2
(c) -3a2 = -3â‡” a2 =1 â‡” a = Â±1
(d) For a =1, the line is y = 6x – 3
For a = -1, the line is y = -6x – 3

### Question

[Maximum mark: 10]
Consider the curve with equation f (x) = 2x3 .
(a) Find the equation of the tangent line to the curve at x =1 . [3]
(b) Find in terms of a the equation of the tangent line to the curve at x = a . [3]
(c) Hence, find the equation of the tangent line passing through the point A(0, 4) . [4]

f (x) = 2x3
(a)Â  f ‘(x) = 6x2
At x =1, y = 2 , Point (1,2)
mT = 6
Tangent line: y – 2 = 6(x -1)Â  Â  Â  Â (i.e. y = 6x – 4 )
(b) At x ï€½ a , 3 y ï€½ 2a , Point 3 (a,2a )
mT = 6a2
Tangent line: y = 2a3 = 6a2 (x – a) â‡’Â  y = 2a3 = 6a2 x – 6a3
â‡’ y = 6a2 x – 4a3
(c) 4a3 = 4â‡” a3 =-1â‡” a = -1
Hence, the tangent line is y = 6x + 4

Â

Â