IBDP Maths SL 1.5 Laws of exponents and logarithms AA HL Paper 2- Exam Style Questions- New Syllabus
The loudness of a sound, \( L \), measured in decibels, is related to its intensity, \( I \) units, by \( L = 10 \log_{10}(I \times 10^{12}) \).
Consider two sounds, \( S_1 \) and \( S_2 \).
\( S_1 \) has an intensity of \( 10^{-6} \) units and a loudness of 60 decibels.
\( S_2 \) has an intensity that is twice that of \( S_1 \).
(a) State the intensity of \( S_2 \). [1 mark]
(b) Determine the loudness of \( S_2 \). [2 marks]
The maximum loudness of thunder in a thunderstorm was measured to be 115 decibels.
(c) Find the thunder’s corresponding intensity, \( I \). [3 marks]
▶️ Answer/Explanation
(a) Intensity of \( S_2 \): \( I_{S_2} = 2 \times 10^{-6} = \frac{1}{500000} \) units. A1
[1 mark]
(b) Loudness of \( S_2 \): substitute \( I_{S_2} = 2 \times 10^{-6} \) into \( L = 10 \log_{10}(I \times 10^{12}) \). M1
\( L_{S_2} = 10 \log_{10}(2 \times 10^{-6} \times 10^{12}) = 10 \log_{10}(2 \times 10^6) \). A1
\( = 10 (\log_{10} 2 + 6) \approx 10 (0.3010 + 6) = 63.01 \approx 63.0 \) decibels. A1
[2 marks]
(c) Thunder’s loudness: \( 115 = 10 \log_{10}(I \times 10^{12}) \). M1
Solve: \( \log_{10}(I \times 10^{12}) = \frac{115}{10} = 11.5 \), so \( I \times 10^{12} = 10^{11.5} \). A1
\( I = \frac{10^{11.5}}{10^{12}} = 10^{-0.5} \approx 0.316227 \approx 0.316 \) units. A1
[3 marks]
Total [6 marks]
(a) Given: Intensity of \( S_1 \) is \( 10^{-6} \) units. Intensity of \( S_2 \) is twice that of \( S_1 \).
\( I_{S_2} = 2 \times 10^{-6} \) units.
(b) Loudness formula: \( L = 10 \log_{10}(I \times 10^{12}) \). For \( S_1 \), \( I_{S_1} = 10^{-6} \):
\( L_{S_1} = 10 \log_{10}(10^{-6} \times 10^{12}) = 10 \log_{10}(10^6) = 60 \) decibels, which matches.
For \( S_2 \), \( I_{S_2} = 2 \times 10^{-6} \):
\( L_{S_2} = 10 \log_{10}(2 \times 10^{-6} \times 10^{12}) = 10 \log_{10}(2 \times 10^6) \).
\( = 10 (\log_{10} 2 + 6) \approx 10 (0.3010 + 6) = 63.01 \approx 63.0 \) decibels.
(c) For thunder, \( L = 115 \) decibels:
\( 115 = 10 \log_{10}(I \times 10^{12}) \).
\( \log_{10}(I \times 10^{12}) = 11.5 \), so \( I \times 10^{12} = 10^{11.5} \).
\( I = 10^{11.5 – 12} = 10^{-0.5} \approx 0.316227 \approx 0.316 \) units.