Home / IB DP Math AA : Topic: SL 1.5: Laws of exponents with integer- IB Style Questions- HL Paper 2

IB DP Math AA : Topic: SL 1.5: Laws of exponents with integer- IB Style Questions- HL Paper 2

Question

The loudness of a sound, $L$, measured in decibels, is related to its intensity, $I$ units, by $L = 10 \log_{10}(I \times 10^{12})$.

Consider two sounds, $S_1$ and $S_2$.

$S_1$ has an intensity of $10^6$ units and a loudness of 60 decibels.

$S_2$ has an intensity that is twice that of $S_1$.

(a) State the intensity of $S_2$.

(b) Determine the loudness of $S_2$.

The maximum loudness of thunder in a thunderstorm was measured to be 115 decibels.

(c) Find the thunder’s corresponding intensity, $I$.

▶️Answer/Explanation

Detailed solution

Part (a): We’re given:
The intensity of \( S_1 \) is \( 10^{-6} \) units.
The intensity of \( S_2 \) is twice that of \( S_1 \).

So, the intensity of \( S_2 \):

\[
I_{S_2} = 2 \times I_{S_1} = 2 \times 10^{-6} = 2 \times 10^{-6} \text{ units}
\]

Part (b): Given the loudness formula is:

\[
L = 10 \log_{10}(I \times 10^{12})
\]

First, let’s verify the loudness of \( S_1 \), which is given as 60 decibels with intensity \( I_{S_1} = 10^{-6} \):

\[
L_{S_1} = 10 \log_{10}(10^{-6} \times 10^{12})
\]

\[
10^{-6} \times 10^{12} = 10^{-6 + 12} = 10^6
\]

\[
L_{S_1} = 10 \log_{10}(10^6) = 10 \times 6 = 60 \text{ decibels}
\]

This matches the given loudness, confirming the formula is consistent.

Now, for \( S_2 \), with intensity \( I_{S_2} = 2 \times 10^{-6} \):

\[
L_{S_2} = 10 \log_{10}((2 \times 10^{-6}) \times 10^{12})
\]

\[
2 \times 10^{-6} \times 10^{12} = 2 \times 10^{-6 + 12} = 2 \times 10^6
\]

\[
L_{S_2} = 10 \log_{10}(2 \times 10^6)
\]

\[
= 10 \left( \log_{10} 2 + \log_{10} 10^6 \right)
\]

\[
= 10 \left( \log_{10} 2 + 6 \right)
\]

\[
\log_{10} 2 \approx 0.3010
\]

\[
L_{S_2} = 10 (0.3010 + 6) = 10 \times 6.3010 = 63.01
\]

So, the loudness of \( S_2 \) is approximately 63.01 decibels

Part (c): The thunder has a loudness of 115 decibels. Using the formula:

\[
L = 10 \log_{10}(I \times 10^{12})
\]

\[
115 = 10 \log_{10}(I \times 10^{12})
\]

\[
\log_{10}(I \times 10^{12}) = \frac{115}{10} = 11.5
\]

\[
I \times 10^{12} = 10^{11.5}
\]

\[
I = \frac{10^{11.5}}{10^{12}} = 10^{11.5 – 12} = 10^{-0.5}
\]

\[
10^{-0.5} = \frac{1}{\sqrt{10}} \approx \frac{1}{3.162} \approx 0.3162
\]

\[
I \approx 3.162 \times 10^{-1} \text{ units}
\]

To four significant figures:

\[
I \approx 0.3162 \text{ units}
\]

…………………Markscheme…………………..

Solution: –

(a) $I = 2 \times 10^{-6} = \frac{1}{500000}$ (units)

(b) substitutes their doubled $I$-value from part (a) into $L$

$L = 10 \log_{10}(2 \times 10^{-6} \times 10^{12}) = 63.0102…$

$L = 63.0$ (decibels)

(c) $115 = 10 \log_{10}(I \times 10^{12})$

attempts to solve for $I$

$I = \frac{10^{13.5}}{10^{12}}$ (or equivalent) = 0.316227…

$I = 0.316$ (units)

Scroll to Top