Home / IBDP Maths AHL 1.12 Complex numbers AA HL Paper 2- Exam Style Questions

IBDP Maths AHL 1.12 Complex numbers AA HL Paper 2- Exam Style Questions

IBDP Maths AHL 1.12 Complex numbers AA HL Paper 2- Exam Style Questions- New Syllabus

Question

Let \( z = 1 + \cos 2\theta + i \sin 2\theta \), where \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \).

(a)

(i) Show that \( \arg z = \theta \). [2 marks]

(ii) Show that \( |z| = 2 \cos \theta \). [2 marks]

(b) Hence or otherwise, find the value of \( \theta \) such that \( \arg(z^2) = |z|^3 \). [3 marks]

▶️ Answer/Explanation
Solution

(a) (i) To show \( \arg z = \theta \), express \( z = 1 + \cos 2\theta + i \sin 2\theta \):

Real part: \( x = 1 + \cos 2\theta \), Imaginary part: \( y = \sin 2\theta \).

The argument is \( \arg z = \tan^{-1} \left( \frac{y}{x} \right) = \tan^{-1} \left( \frac{\sin 2\theta}{1 + \cos 2\theta} \right) \). M1

Use double-angle identities: \( \sin 2\theta = 2 \sin \theta \cos \theta \), \( \cos 2\theta = 2 \cos^2 \theta – 1 \).

Then: \( x = 1 + (2 \cos^2 \theta – 1) = 2 \cos^2 \theta \), \( y = 2 \sin \theta \cos \theta \).

\[ \frac{y}{x} = \frac{2 \sin \theta \cos \theta}{2 \cos^2 \theta} = \frac{\sin \theta}{\cos \theta} = \tan \theta \]

\[ \arg z = \tan^{-1} (\tan \theta) = \theta \] (since \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \)). A1

Verify: \( x = 2 \cos^2 \theta > 0 \), and \( y = 2 \sin \theta \cos \theta \) has the sign of \( \sin \theta \), consistent with \( \arg z = \theta \).

[2 marks]

(a) (ii) To show \( |z| = 2 \cos \theta \):

\[ |z| = \sqrt{(1 + \cos 2\theta)^2 + (\sin 2\theta)^2} \] M1

Expand: \( (1 + \cos 2\theta)^2 = 1 + 2 \cos 2\theta + \cos^2 2\theta \), \( (\sin 2\theta)^2 = \sin^2 2\theta \).

\[ |z|^2 = 1 + 2 \cos 2\theta + \cos^2 2\theta + \sin^2 2\theta = 1 + 2 \cos 2\theta + 1 = 2 (1 + \cos 2\theta) \]

Use \( 1 + \cos 2\theta = 2 \cos^2 \theta \):

\[ |z|^2 = 2 \cdot 2 \cos^2 \theta = 4 \cos^2 \theta \]

\[ |z| = \sqrt{4 \cos^2 \theta} = 2 \cos \theta \] (since \( \cos \theta > 0 \) for \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \)). A1

[2 marks]

(b) Find \( \theta \) such that \( \arg(z^2) = |z|^3 \):

\[ \arg(z^2) = 2 \arg z = 2 \theta \]

\[ |z|^3 = (2 \cos \theta)^3 = 8 \cos^3 \theta \]

Set up: \( 2 \theta = 8 \cos^3 \theta \Rightarrow \theta = 4 \cos^3 \theta \). M1

Define \( f(\theta) = \theta – 4 \cos^3 \theta \). Solve \( f(\theta) = 0 \):

Test values in \( (0, \frac{\pi}{2}) \): \( f(0.9) \approx -0.060 \), \( f(0.95) \approx 0.162 \). A root exists between 0.9 and 0.95.

Numerical approximation gives \( \theta \approx 0.913 \). A1 A1

[3 marks]

Total [7 marks]

Alternative Method for (a) (i) and (ii):

Rewrite \( z \):

\[ z = 1 + 2 \cos^2 \theta – 1 + 2 \sin \theta \cos \theta i = 2 \cos^2 \theta + 2 \sin \theta \cos \theta i \]

\[ z = 2 \cos \theta (\cos \theta + i \sin \theta) = 2 \cos \theta \text{cis} \theta \] M1

Thus: \( |z| = 2 \cos \theta \), \( \arg z = \theta \). A1

Question

Part A: Let \( z \) be a non-zero complex number, and define \( L(z) = \ln |z| + i \arg(z) \), where \( 0 \leq \arg(z) < 2\pi \).

(a) Show that when \( z \) is a positive real number, \( L(z) = \ln z \). [2 marks]

(b) Calculate:

(i) \( L(-1) \); [2 marks]

(ii) \( L(1 – i) \); [2 marks]

(iii) \( L(-1 + i) \). [1 mark]

(c) Show that the property \( L(z_1 z_2) = L(z_1) + L(z_2) \) does not hold for all values of \( z_1 \) and \( z_2 \). [2 marks]

Part B: Let \( f \) be a function with domain \( \mathbb{R} \) that satisfies \( f(x + y) = f(x)f(y) \) for all \( x, y \in \mathbb{R} \), and \( f(0) \neq 0 \).

(a) Show that \( f(0) = 1 \). [3 marks]

(b) Prove that \( f(x) \neq 0 \) for all \( x \in \mathbb{R} \). [3 marks]

(c) Assuming \( f'(x) \) exists for all \( x \in \mathbb{R} \), use the definition of the derivative to show that \( f(x) \) satisfies the differential equation \( f'(x) = k f(x) \), where \( k = f'(0) \). [4 marks]

(d) Solve the differential equation to find an expression for \( f(x) \). [4 marks]

▶️ Answer/Explanation
Solution

Part A:

(a) For a positive real number \( z > 0 \), we have \( |z| = z \) and \( \arg(z) = 0 \) (since \( z \) lies on the positive real axis). A1

Thus: \( L(z) = \ln |z| + i \arg(z) = \ln z + i \cdot 0 = \ln z \). A1

[2 marks]

(b) (i) For \( z = -1 \):

\[ |z| = |-1| = 1, \quad \arg(-1) = \pi \quad (\text{since } -1 \text{ is on the negative real axis}) \]

\[ L(-1) = \ln 1 + i \pi = 0 + i \pi = i \pi \] A1 A1

[2 marks]

(b) (ii) For \( z = 1 – i \):

\[ |z| = \sqrt{1^2 + (-1)^2} = \sqrt{2}, \quad \arg(1 – i) = \tan^{-1} \left( \frac{-1}{1} \right) = -\frac{\pi}{4} \]

Since \( 0 \leq \arg(z) < 2\pi \), adjust: \( -\frac{\pi}{4} + 2\pi = \frac{7\pi}{4} \).

\[ L(1 – i) = \ln \sqrt{2} + i \frac{7\pi}{4} = \frac{1}{2} \ln 2 + i \frac{7\pi}{4} \] A1 A1

[2 marks]

(b) (iii) For \( z = -1 + i \):

\[ |z| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}, \quad \arg(-1 + i) = \tan^{-1} \left( \frac{1}{-1} \right) = -\frac{\pi}{4} + \pi = \frac{3\pi}{4} \quad (\text{second quadrant}) \]

\[ L(-1 + i) = \ln \sqrt{2} + i \frac{3\pi}{4} = \frac{1}{2} \ln 2 + i \frac{3\pi}{4} \] A1

[1 mark]

(c) To show \( L(z_1 z_2) \neq L(z_1) + L(z_2) \) for some \( z_1, z_2 \):

Use \( z_1 = -1 \), \( z_2 = 1 – i \), so \( z_1 z_2 = (-1)(1 – i) = -1 + i \). M1

From (b): \( L(-1) = i \pi \), \( L(1 – i) = \frac{1}{2} \ln 2 + i \frac{7\pi}{4} \), \( L(-1 + i) = \frac{1}{2} \ln 2 + i \frac{3\pi}{4} \).

Check: \( L(z_1) + L(z_2) = i \pi + \left( \frac{1}{2} \ln 2 + i \frac{7\pi}{4} \right) = \frac{1}{2} \ln 2 + i \left( \pi + \frac{7\pi}{4} \right) = \frac{1}{2} \ln 2 + i \frac{11\pi}{4} \).

Since \( \frac{11\pi}{4} > 2\pi \), adjust the argument: \( \frac{11\pi}{4} – 2\pi = \frac{3\pi}{4} \).

Thus: \( L(z_1) + L(z_2) = \frac{1}{2} \ln 2 + i \frac{3\pi}{4} = L(-1 + i) \).

This suggests the property holds here, so try another pair, e.g., \( z_1 = z_2 = -1 \):

\[ z_1 z_2 = (-1)(-1) = 1, \quad L(1) = \ln 1 + i \cdot 0 = 0 \]

\[ L(-1) + L(-1) = i \pi + i \pi = 2i \pi \neq 0 \] R1

Thus, \( L(z_1 z_2) \neq L(z_1) + L(z_2) \) in general. AG

[2 marks]

Total [9 marks]

Part B:

(a) Given \( f(x + y) = f(x)f(y) \), set \( x = y = 0 \):

\[ f(0 + 0) = f(0)f(0) \Rightarrow f(0) = f(0)^2 \] M1 A1

Since \( f(0) \neq 0 \), \( f(0)^2 = f(0) \Rightarrow f(0)(f(0) – 1) = 0 \Rightarrow f(0) = 1 \). R1

[3 marks]

(b) Method 1: Set \( y = -x \):

\[ f(x – x) = f(x)f(-x) \Rightarrow f(0) = f(x)f(-x) \] M1 A1

Since \( f(0) = 1 \), \( f(x)f(-x) = 1 \Rightarrow f(x) \neq 0 \). R1

Method 2: Suppose \( f(x) = 0 \) for some \( x \):

\[ f(x – x) = f(x)f(-x) \Rightarrow f(0) = 0 \cdot f(-x) = 0 \] M1 A1

This contradicts \( f(0) = 1 \), so \( f(x) \neq 0 \). R1

[3 marks]

(c) Using the derivative definition:

\[ f'(x) = \lim_{h \to 0} \frac{f(x + h) – f(x)}{h} \] M1

\[ f(x + h) = f(x)f(h) \Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) – f(x)f(0)}{h} = f(x) \lim_{h \to 0} \frac{f(h) – f(0)}{h} \] A1 A1

\[ \lim_{h \to 0} \frac{f(h) – f(0)}{h} = f'(0) = k \Rightarrow f'(x) = k f(x) \] A1

[4 marks]

(d) Solve \( f'(x) = k f(x) \):

\[ \frac{f'(x)}{f(x)} = k \Rightarrow \int \frac{f'(x)}{f(x)} dx = \int k \, dx \Rightarrow \ln |f(x)| = kx + C \] M1 A1

Since \( f(x) \neq 0 \), \( \ln f(x) = kx + C \).

At \( x = 0 \): \( \ln f(0) = C \Rightarrow C = \ln 1 = 0 \). A1

\[ \ln f(x) = kx \Rightarrow f(x) = e^{kx} \] A1

[4 marks]

Total [14 marks]

Scroll to Top