Home / IB DP Math AA Topic: AHL 1.12 : Complex numbers Cartesian form- IB Style Questions HL Paper 2

IB DP Math AA Topic: AHL 1.12 : Complex numbers Cartesian form- IB Style Questions HL Paper 2

Question

Let $z = 1 + \cos 2\theta + i \sin 2\theta$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

(a) Show that

(i) $\arg z = \theta$;

(ii) $|z| = 2 \cos \theta$.

(b) Hence or otherwise, find the value of $\theta$ such that $\arg(z^2) = |z|^3$.

▶️Answer/Explanation

Detailed Solution

(a)(i) Show that \(\arg z = \theta\)

To find the argument of \( z \), we need to express \( z \) in the form \( x + iy \), where \( x \) is the real part and \( y \) is the imaginary part, and then compute \( \arg z = \tan^{-1} \left( \frac{y}{x} \right) \), adjusting for the quadrant. Let’s start by simplifying the expression for \( z \):

\[
z = 1 + \cos 2\theta + i \sin 2\theta
\]

 Real part: \( x = 1 + \cos 2\theta \)
 Imaginary part: \( y = \sin 2\theta \)

Now, compute the argument:

\[
\arg z = \tan^{-1} \left( \frac{y}{x} \right) = \tan^{-1} \left( \frac{\sin 2\theta}{1 + \cos 2\theta} \right)
\]

This looks promising, but we need to show it equals \( \theta \). Let’s use trigonometric identities to simplify the expression. Recall the double-angle identities:

 \( \sin 2\theta = 2 \sin \theta \cos \theta \)
 \( \cos 2\theta = \cos^2 \theta – \sin^2 \theta = 2 \cos^2 \theta – 1 \)

Substitute these into the real and imaginary parts:

\[
x = 1 + \cos 2\theta = 1 + (2 \cos^2 \theta – 1) = 2 \cos^2 \theta
\]

\[
y = \sin 2\theta = 2 \sin \theta \cos \theta
\]

So:

\[
\frac{y}{x} = \frac{2 \sin \theta \cos \theta}{2 \cos^2 \theta} = \frac{\sin \theta}{\cos \theta} = \tan \theta
\]

Thus:

\[
\arg z = \tan^{-1} \left( \frac{2 \sin \theta \cos \theta}{2 \cos^2 \theta} \right) = \tan^{-1} (\tan \theta)
\]

Since \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \), and \( \tan^{-1} (\tan \theta) = \theta \) in this interval (where the tangent function is one-to-one), we have:

\[
\arg z = \theta
\]

We should verify the quadrant: \( x = 2 \cos^2 \theta > 0 \) (since \( \cos^2 \theta > 0 \)), and \( y = 2 \sin \theta \cos \theta \) has the sign of \( \sin \theta \) (since \( \cos \theta > 0 \) for \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \)). When \( \theta > 0 \), \( y > 0 \), so \( z \) is in the first quadrant; when \( \theta < 0 \), \( y < 0 \), fourth quadrant—consistent with \( \arg z = \theta \). This holds, so part (i) is shown.

(a)(ii) Show that \(|z| = 2 \cos \theta\)

The modulus of a complex number \( z = x + iy \) is:

\[
|z| = \sqrt{x^2 + y^2}
\]

Using our expressions:

\[
x = 1 + \cos 2\theta, \quad y = \sin 2\theta
\]

\[
|z| = \sqrt{(1 + \cos 2\theta)^2 + (\sin 2\theta)^2}
\]

Expand the expression:

\[
(1 + \cos 2\theta)^2 = 1 + 2 \cos 2\theta + \cos^2 2\theta
\]

\[
(\sin 2\theta)^2 = \sin^2 2\theta
\]

\[
|z|^2 = (1 + \cos 2\theta)^2 + (\sin 2\theta)^2 = 1 + 2 \cos 2\theta + \cos^2 2\theta + \sin^2 2\theta
\]

Since \( \cos^2 2\theta + \sin^2 2\theta = 1 \):

\[
|z|^2 = 1 + 2 \cos 2\theta + 1 = 2 + 2 \cos 2\theta = 2 (1 + \cos 2\theta)
\]

Now, use \( 1 + \cos 2\theta = 2 \cos^2 \theta \):

\[
|z|^2 = 2 \cdot 2 \cos^2 \theta = 4 \cos^2 \theta
\]

\[
|z| = \sqrt{4 \cos^2 \theta} = 2 \sqrt{\cos^2 \theta}
\]

Since \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \), \( \cos \theta > 0 \), so:

\[
|z| = 2 \cos \theta
\]

This matches perfectly, and \( |z| \geq 0 \), which is satisfied since \( \cos \theta > 0 \) in the interval. Part (ii) is shown.

(b) Find the value of \(\theta\) such that \(\arg(z^2) = |z|^3\)

Using the results from part (a):

\( \arg z = \theta \)

 \( |z| = 2 \cos \theta \)

First, compute \( \arg(z^2) \):

For a complex number \( z \), \( \arg(z^n) = n \arg z \) 

\[
\arg(z^2) = 2 \arg z = 2 \theta
\]

Next, compute \( |z|^3 \):

\[
|z|^3 = (|z|)^3 = (2 \cos \theta)^3 = 8 \cos^3 \theta
\]

The equation becomes:

\[
\arg(z^2) = |z|^3
\]

\[
2 \theta = 8 \cos^3 \theta
\]

\[
\theta = 4 \cos^3 \theta
\]

Let’s solve this. Define \( f(\theta) = \theta – 4 \cos^3 \theta \), and find where \( f(\theta) = 0 \) in \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \).

– Test \( \theta = 0 \):
\[
f(0) = 0 – 4 \cos^3 0 = 0 – 4 \cdot 1 = -4 < 0
\]

Test \( \theta = \frac{\pi}{4} \):
\[
\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \quad \cos^3 \frac{\pi}{4} = \left(\frac{\sqrt{2}}{2}\right)^3 = \frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}
\]
\[
4 \cos^3 \frac{\pi}{4} = 4 \cdot \frac{1}{2\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \approx 1.414
\]
\[
f\left(\frac{\pi}{4}\right) = \frac{\pi}{4} – 1.414 \approx 0.785 – 1.414 = -0.629 < 0
\]

 Test \( \theta = \frac{\pi}{2} \) (boundary, not included):
\[
\cos \frac{\pi}{2} = 0, \quad f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} – 0 \approx 1.571 > 0
\]

– Test \( \theta = -\frac{\pi}{4} \):
\[
\cos \left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad 4 \cos^3 \left(-\frac{\pi}{4}\right) = \sqrt{2}
\]
\[
f\left(-\frac{\pi}{4}\right) = -\frac{\pi}{4} – \sqrt{2} \approx -0.785 – 1.414 = -2.199 < 0
\]

Try positive values closer to zero:

 \( \theta = 0.5 \):
\[
\cos 0.5 \approx 0.8776, \quad \cos^3 0.5 \approx 0.676, \quad 4 \cos^3 0.5 \approx 2.704
\]
\[
f(0.5) = 0.5 – 2.704 = -2.204 < 0
\]

 \( \theta = 1 \):
\[
\cos 1 \approx 0.5403, \quad \cos^3 1 \approx 0.158, \quad 4 \cos^3 1 \approx 0.632
\]
\[
f(1) = 1 – 0.632 = 0.368 > 0
\]

A root exists between 0.5 and 1. Refine with \( \theta = 0.8 \):

\[
\cos 0.8 \approx 0.6967, \quad \cos^3 0.8 \approx 0.338, \quad 4 \cos^3 0.8 \approx 1.352
\]

\[
f(0.8) = 0.8 – 1.352 = -0.552 < 0
\]

\( \theta = 0.9 \):

\[
\cos 0.9 \approx 0.6216, \quad 4 \cos^3 0.9 \approx 0.960
\]

\[
f(0.9) = 0.9 – 0.960 = -0.060 < 0
\]

\( \theta = 0.95 \):

\[
\cos 0.95 \approx 0.5817, \quad 4 \cos^3 0.95 \approx 0.788
\]

\[
f(0.95) = 0.95 – 0.788 = 0.162 > 0
\]

The root is between 0.9 and 0.95. Since \( \cos^3 \theta \) decreases, and the left side is linear, there’s one positive solution. Numerically, \( \theta \approx 0.93 \) satisfies it closely.

………………….Markscheme……………………………….

Solution: –

(i) $arg~z = arctan(\frac{sin~2\theta}{1+cos~2\theta}) (tan(arg~z) = \frac{sin~2\theta}{1+cos~2\theta})$

uses $2sin\theta cos\theta$ in the numerator and any double angle identity for $cos~2\theta$ in the denominator

$arg~z = arctan(\frac{2sin\theta cos\theta}{2cos^{2}\theta}) (tan(arg~z) = \frac{2sin\theta cos\theta}{2cos^{2}\theta})$

$\Rightarrow arg~z = arctan(tan~\theta) (-\frac{\pi}{2}<\theta<\frac{\pi}{2})$

$= \theta$

(ii) attempts to express $|z|$ in the form $\sqrt{(Re~z)^{2}+(Im~z)^{2}}$

$|z| = \sqrt{(1+cos~2\theta)^{2}+sin^{2}2\theta}$

attempts to expand $(1+cos~2\theta)^{2}$ and then uses $cos^{2}2\theta+sin^{2}2\theta=1$ an attempt to simplify

$|z| = \sqrt{2+2cos~2\theta}$

$|z| = \sqrt{4cos^{2}\theta} (=2|cos~\theta|)$

$= 2cos~\theta (-\frac{\pi}{2}<\theta<\frac{\pi}{2})$

METHOD 2 (i) and (ii)

$z = 1 + 2\cos^2\theta – 1 + 2\sin\theta\cos\theta i$

$z = 2\cos^2\theta + 2\sin\theta\cos\theta i$

attempt to form $z = r cis\theta$

$z = 2\cos\theta(\cos\theta + i\sin\theta)$

$\therefore |z| = 2\cos\theta$ and $\arg z = \theta$.

(b) $2\theta = (2\cos\theta)^3$

attempts to solve for $\theta$

$\theta = 0.913236…$

$\theta = 0.913$

 
Scroll to Top