Home / IBDP Maths analysis and approaches Topic: AHL 2.16 :The graphs of the functions HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 2.16 :The graphs of the functions HL Paper 1

Question: [Maximum mark: 8]

A function f is defined by f(x) = \(\frac{2x – 1}{x + 1}\), where x ∈ R, x ≠ -1.
(a) The graph of y = f (x) has a vertical asymptote and a horizontal asymptote.
Write down the equation of
(i) the vertical asymptote;
(ii) the horizontal asymptote.

(b) On the set of axes below, sketch the graph of y = f (x) .
On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

(c) Hence, solve the inequality \(0<\frac{2x – 1}{x + 1} <2.\)
(d) Solve the inequality \(0<\frac{2|x|-1}{|x| + 1} <2.\)

▶️Answer/Explanation

Ans:

(a) (i)  x =−1
    (ii) y = 2

(b)    

rational function shape with two branches in opposite quadrants, with two correctly positioned asymptotes and asymptotic behaviour shown axes intercepts clearly shown at \(x = \frac{1}{2} and y = -1\)

(c)   x >  \(\frac{1}{2}\)

Note: Accept correct alternative correct notation, such as \(\left ( \frac{1}{2}, \infty \right ) and ]\frac{1}{2}, \infty [.\)

(d) EITHER
attempts to sketch \(y = \frac{2|x| – 1}{|x|+1}\)

OR
attempts to solve 2|x| – 1 = 0

Note: Award the (M1) if \(x = \frac{1}{2} and x = -\frac{1}{2}\)   are identified.

THEN

\(x <-\frac{1}{2} and x >\frac{1}{2}\)

Note: Accept the use of a comma. Condone the use of ‘and’. Accept correct alternative notation.

Question

The graphs of \(y = \left| {x + 1} \right|\) and \(y = \left| {x – 3} \right|\) are shown below.

Let f (x) = \(\left| {\,x + 1\,} \right| – \left| {\,x – 3\,} \right|\).

Draw the graph of y = f (x) on the blank grid below.

[4]

a.

Hence state the value of

(i)     \(f'( – 3)\);

(ii)     \(f'(2.7)\);

(iii)     \(\int_{ – 3}^{ – 2} {f(x)dx} \).[4]

b.
▶️Answer/Explanation

Markscheme

    M1A1A1A1

Note: Award M1 for any of the three sections completely correct, A1 for each correct segment of the graph.

 

 

[4 marks]

a.

(i)     0     A1

(ii)     2     A1

(iii)     finding area of rectangle     (M1)

\( – 4\)     A1

Note: Award M1A0 for the answer 4.

[4 marks] 

b.

Question

A rational function is defined by \(f(x) = a + \frac{b}{{x – c}}\) where the parameters \(a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}\) and \(x \in \mathbb{R}\backslash \{ c\} \). The following diagram represents the graph of \(y = f(x)\).

Using the information on the graph,

state the value of \(a\) and the value of \(c\);[2]

a.

find the value of \(b\).[2]

b.
▶️Answer/Explanation

Markscheme

\(a = 1\)    A1

\(c = 3\)    A1

[2 marks]

a.

use the coordinates of \((1,{\text{ }}0)\) on the graph     M1

\(f(1) = 0 \Rightarrow 1 + \frac{b}{{1 – 3}} = 0 \Rightarrow b = 2\)    A1

[2 marks]

b.

Question

Sketch the graphs of \(y = \frac{x}{2} + 1\) and \(y = \left| {x – 2} \right|\) on the following axes.

[3]

a.

Solve the equation \(\frac{x}{2} + 1 = \left| {x – 2} \right|\).[4]

b.
▶️Answer/Explanation

Markscheme

straight line graph with correct axis intercepts      A1

modulus graph: V shape in upper half plane      A1

modulus graph having correct vertex and y-intercept      A1

[3 marks]

a.

METHOD 1

attempt to solve \(\frac{x}{2} + 1 = x – 2\)     (M1)

\(x = 6\)      A1

Note: Accept \(x = 6\) using the graph.

attempt to solve (algebraically) \(\frac{x}{2} + 1 = 2 – x\)     M1

\(x = \frac{2}{3}\)     A1

[4 marks]

METHOD 2

\({\left( {\frac{x}{2} + 1} \right)^2} = {\left( {x – 2} \right)^2}\)      M1

\(\frac{{{x^2}}}{4} + x + 1 = {x^2} – 4x + 4\)

\(0 = \frac{{3{x^2}}}{4} – 5x + 3\)

\(3{x^2} – 20x + 12 = 0\)

attempt to factorise (or equivalent)       M1

\(\left( {3x – 2} \right)\left( {x – 6} \right) = 0\)

\(x = \frac{2}{3}\)     A1

\(x = 6\)      A1

[4 marks]

b.
Scroll to Top