Home / IBDP Maths analysis and approaches Topic: SL 2.9 :The function logx and its graph HL Paper 1

IBDP Maths analysis and approaches Topic: SL 2.9 :The function logx and its graph HL Paper 1

Question

Write \(\ln ({x^2} – 1) – 2\ln (x + 1) + \ln ({x^2} + x)\) as a single logarithm, in its simplest form.

▶️Answer/Explanation

Markscheme

\(\ln ({x^2} – 1) – \ln {(x + 1)^2} + \ln x(x + 1)\)     (A1)

\( = \ln \frac{{x({x^2} – 1)(x + 1)}}{{{{(x + 1)}^2}}}\)     (M1)A1

\( = \ln \frac{{x(x + 1)(x – 1)(x + 1)}}{{{{(x + 1)}^2}}}\)     (A1)

\( = \ln x(x – 1)\,\,\,\,\,\left( { = \ln ({x^2} – x)} \right)\)     A1

[5 marks]

Question

Let \(g(x) = {\log _5}\left| {2{{\log }_3}x} \right|\) . Find the product of the zeros of g .

▶️Answer/Explanation

Markscheme

\(g(x) = 0\)

\({\log _5}\left| {2{{\log }_3}x} \right| = 0\)     (M1)

\(\left| {2{{\log }_3}x} \right| = 1\)     A1

\({\log _3}x =  \pm \frac{1}{2}\)     (A1)

\(x = {3^{ \pm \frac{1}{2}}}\)     A1

so the product of the zeros of g is \({3^{\frac{1}{2}}} \times {3^{ – \frac{1}{2}}} = 1\)     A1     N0

[5 marks]

Question

a.State the set of values of \(a\) for which the function \(x \mapsto {\log _a}x\) exists, for all \(x \in {\mathbb{R}^ + }\).[2]

b. Given that \({\log _x}y = 4{\log _y}x\), find all the possible expressions of \(y\) as a function of \(x\).[6]

▶️Answer/Explanation

Markscheme

a. \(a > 0\)     A1

\(a \ne 0\)     A1

[2 marks]

b.

METHOD 1

\({\log _x}y = \frac{{\ln y}}{{\ln x}}\) and \({\log _y}x = \frac{{\ln x}}{{\ln y}}\)     M1A1

Note:     Use of any base is permissible here, not just “e”.

\({\left( {\frac{{\ln y}}{{\ln x}}} \right)^2} = 4\)     A1

\(\ln y =  \pm 2\ln x\)     A1

\(y = {x^2}\;\;\;\)or\(\;\;\;\frac{1}{{{x^2}}}\)     A1A1

METHOD 2

\({\log _y}x = \frac{{{{\log }_x}x}}{{{{\log }_x}y}} = \frac{1}{{{{\log }_x}y}}\)     M1A1

\({({\log _x}y)^2} = 4\)     A1

\({\log _x}y =  \pm 2\)     A1

\(y = {x^2}\;\;\;\)or\(\;\;\;y = \frac{1}{{{x^2}}}\)     A1A1

Note: The final two A marks are independent of the one coming before.

[6 marks]

Total [8 marks]

 

Question

(a) Let a = log2x, b = log2y, c = log2z. Write \(log_2(\frac{x^3\sqrt{y}}{z^4})\) in terms of a, b and c.
(b) Let A = log2x, B = log4y, C = log8z. Write \(log_2(\frac{x^3\sqrt{y}}{z^4})\) in terms of A, B and C.

▶️Answer/Explanation

Ans
(a) \(log_2(\frac{x^3\sqrt{y}}{z^4})=3a+\frac{1}{2}b-4c\).
(b) \(log_2(\frac{x^3\sqrt{y}}{z^4})\)=3A+B-12C\)

Question

Solve the simultaneous equation    \(2^{x^2}=4^{y}\) and \(log_zy=\frac{3}{2}\)

▶️Answer/Explanation

Ans
x = 4, y = 8

Scroll to Top