Home / IBDP Maths SL 2.9 : Logarithmic functions and their graphs AA HL Paper 2- Exam Style Questions

IBDP Maths SL 2.9 : Logarithmic functions and their graphs AA HL Paper 2- Exam Style Questions

IBDP Maths SL 2.9 : Logarithmic functions and their graphs AA HL Paper 2- Exam Style Questions- New Syllabus

Question

All living plants contain an isotope of carbon called carbon-14. When a plant dies, the isotope decays so that the amount of carbon-14 present in the remains of the plant decreases. The time since the death of a plant can be determined by measuring the amount of carbon-14 still present in the remains.

The amount, \( A \), of carbon-14 present in a plant \( t \) years after its death can be modelled by \( A = A_0 e^{-kt} \) where \( t \geq 0 \) and \( A_0 \), \( k \) are positive constants.

At the time of death, a plant is defined to have 100 units of carbon-14.

(a) Show that \( A_0 = 100 \). [1]

The time taken for half the original amount of carbon-14 to decay is known to be 5730 years.

(b) Show that \( k = \frac{\ln 2}{5730} \). [3]

(c) Find, correct to the nearest 10 years, the time taken after the plant’s death for 25 % of the carbon-14 to decay. [3]

▶️ Answer/Explanation
Detailed Solution

(a) Initial Amount:

When \( t = 0 \), \( A = 100 \), substitute into the model:
\( 100 = A_0 e^{-k(0)} = A_0 \cdot 1 \), so \( A_0 = 100 \).
Answer: \( \boxed{A_0 = 100} \)

(b) Decay Constant:

Given the half-life is 5730 years, when \( t = 5730 \), \( A = \frac{1}{2} A_0 = 50 \). Substitute \( A_0 = 100 \):
\( 50 = 100 e^{-k(5730)} \), so \( \frac{1}{2} = e^{-k(5730)} \).
Take the natural logarithm:
\( \ln \left( \frac{1}{2} \right) = -k \cdot 5730 \), thus \( -\ln 2 = -k \cdot 5730 \), and \( k = \frac{\ln 2}{5730} \).
Answer: \( \boxed{k = \frac{\ln 2}{5730}} \)

(c) Time for 25% Decay:

When 25% of carbon-14 has decayed, 75% remains, so \( A = 75 \). Substitute \( A_0 = 100 \), \( k = \frac{\ln 2}{5730} \):
\( 75 = 100 e^{-\frac{\ln 2}{5730} t} \).
Divide by 100: \( 0.75 = e^{-\frac{\ln 2}{5730} t} \).
Take the natural logarithm: \( \ln 0.75 = -\frac{\ln 2}{5730} t \).
Solve for \( t \): \( t = -\frac{\ln 0.75}{\frac{\ln 2}{5730}} = \frac{\ln 0.75}{\ln 2} \cdot 5730 \).
Since \( \ln 0.75 = -\ln \left( \frac{4}{3} \right) \approx -0.2877 \), \( \ln 2 \approx 0.6931 \), we get \( t \approx \frac{-(-0.2877)}{0.6931} \cdot 5730 \approx 2378.4 \).
To the nearest 10 years: \( t \approx 2380 \).
Answer: \( \boxed{2380 \text{ years}} \)

Question

(a) The function \( f \) is defined by

\[ f: x \mapsto e^x – 1 – x \]

(i) Find the minimum value of \( f \).

(ii) Prove that \( e^x \geq 1 + x \) for all real values of \( x \).

(b) Use the principle of mathematical induction to prove that

\[ (1 + 1) \left( 1 + \frac{1}{2} \right) \left( 1 + \frac{1}{3} \right) \dots \left( 1 + \frac{1}{n} \right) = n + 1 \]

for all integers \( n \geq 1 \).

(c) Use the results of parts (a) and (b) to prove that

\[ e^{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} > n \]

(d) Find a value of \( n \) for which

\[ 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > 100 \]

▶️ Answer/Explanation
Detailed Solution

(a) Minimum Value and Inequality:

(i) To find the minimum value of \( f(x) = e^x – 1 – x \), compute the derivative:
\( f'(x) = e^x – 1 \). Set \( f'(x) = 0 \): \( e^x – 1 = 0 \), so \( e^x = 1 \), thus \( x = 0 \).
Check the second derivative: \( f”(x) = e^x \), and at \( x = 0 \), \( f”(0) = e^0 = 1 > 0 \), indicating a local minimum.
Evaluate \( f(0) = e^0 – 1 – 0 = 1 – 1 = 0 \).
The graph of \( y = f(x) \):

Since \( f”(x) > 0 \) for all \( x \), the function is concave up, and \( x = 0 \) is the global minimum. Thus, the minimum value is \( 0 \).
Answer: \( \boxed{0} \)

(ii) From part (i), \( f(x) = e^x – 1 – x \geq 0 \) for all \( x \), with equality at \( x = 0 \).
Thus, \( e^x – 1 – x \geq 0 \implies e^x \geq 1 + x \).
Answer: \( \boxed{e^x \geq 1 + x} \)

(b) Mathematical Induction:

Let \( P(n) \) be the proposition: \( \left( 1 + 1 \right) \left( 1 + \frac{1}{2} \right) \left( 1 + \frac{1}{3} \right) \dots \left( 1 + \frac{1}{n} \right) = n + 1 \).
Base Case: For \( n = 1 \), \( 1 + 1 = 2 \), and \( n + 1 = 1 + 1 = 2 \). Thus, \( P(1) \) is true.
Inductive Step: Assume \( P(k) \) is true for some integer \( k \geq 1 \), i.e.,
\( \left( 1 + 1 \right) \left( 1 + \frac{1}{2} \right) \left( 1 + \frac{1}{3} \right) \dots \left( 1 + \frac{1}{k} \right) = k + 1 \).
Prove \( P(k + 1) \):
\( \left( 1 + 1 \right) \left( 1 + \frac{1}{2} \right) \left( 1 + \frac{1}{3} \right) \dots \left( 1 + \frac{1}{k} \right) \left( 1 + \frac{1}{k + 1} \right) = (k + 1) \cdot \left( 1 + \frac{1}{k + 1} \right) \).
Simplify: \( (k + 1) \cdot \frac{k + 2}{k + 1} = k + 2 \).
Thus, \( P(k) \implies P(k + 1) \). By the principle of mathematical induction, \( P(n) \) is true for all integers \( n \geq 1 \).
Answer: \( \boxed{\left( 1 + 1 \right) \left( 1 + \frac{1}{2} \right) \left( 1 + \frac{1}{3} \right) \dots \left( 1 + \frac{1}{n} \right) = n + 1} \)

(c) Exponential Inequality:

We need to prove \( e^{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} > n \).
Rewrite the exponent: \( e^{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} = e^1 \cdot e^{\frac{1}{2}} \cdot e^{\frac{1}{3}} \dots e^{\frac{1}{n}} \).
From part (a)(ii), \( e^x \geq 1 + x \), so for each term:
\( e^1 \geq 1 + 1 = 2 \), \( e^{\frac{1}{2}} \geq 1 + \frac{1}{2} \), …, \( e^{\frac{1}{n}} \geq 1 + \frac{1}{n} \).
Thus, \( e^1 \cdot e^{\frac{1}{2}} \cdot e^{\frac{1}{3}} \dots e^{\frac{1}{n}} \geq \left( 1 + 1 \right) \left( 1 + \frac{1}{2} \right) \left( 1 + \frac{1}{3} \right) \dots \left( 1 + \frac{1}{n} \right) \).
From part (b), \( \left( 1 + 1 \right) \left( 1 + \frac{1}{2} \right) \left( 1 + \frac{1}{3} \right) \dots \left( 1 + \frac{1}{n} \right) = n + 1 \).
Hence, \( e^{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} \geq n + 1 > n \).
Answer: \( \boxed{e^{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} > n} \)

(d) Harmonic Sum:

We need \( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > 100 \).
From part (c), \( e^{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} > n \).
If \( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > 100 \), then \( e^{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} > e^{100} \).
Since \( e^{100} \approx 2.688 \times 10^{43} \), choose \( n > e^{100} \).
For example, \( n = \lceil e^{100} \rceil \approx 2.689 \times 10^{43} \) ensures the harmonic sum exceeds 100, as \( e^{1 + \frac{1}{2} + \dots + \frac{1}{n}} > n > e^{100} \).
Answer: \( \boxed{n > e^{100}} \)

Scroll to Top