Home / IBDP Maths analysis and approaches Topic: AHL 3.9:Definition of the reciprocal trigonometric ratios secθ , cscθ and cotθ HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 3.9:Definition of the reciprocal trigonometric ratios secθ , cscθ and cotθ HL Paper 1

Question

It is given that cosec θ \(\frac{3}{2}\) , where \(\frac{\pi }{2}< \Lambda < \frac{3\pi }{2}\) Find the exact value of cot q .

▶️Answer/Explanation

Ans: 

METHOD 1

attempt to use a right angled triangle

correct placement of all three values and θ seen in the triangle

cot θ<0 (since cosec  θ >o puts θ in the second quadrant)

\(cot \Theta = – \sqrt{\frac{5}{2}}\)

METHOD 2

Attempt to use 1+ cot2 θ = coses2 θ

 \(1+ cot^2 \Theta = \frac{9}{4}\)

\(cot^2 \Theta = \frac{5}{4}\) 

\(cot\Theta = \pm \frac{\sqrt{5}}{2}\)

cot θ<0 (since cosec  θ >o puts θ in the second quadrant)

cot θ \(\frac{\sqrt{5}}{2}\)

METHOD 3

\(sin \Theta = \frac{2}{3}\)

attempt to use sin2 θ + cos2θ =1

\(\frac{4}{9}\)+cos2 θ =1

cos2 θ  = \(\frac{5}{9}\)

cos θ = ± \(\frac{\sqrt{5}}{3}\)

cot θ<0 (since cosec  θ >o puts θ in the second quadrant)

cos θ =  \(\frac{\sqrt{5}}{3}\) 

cot θ =  -\(\frac{\sqrt{5}}{2}\)

Question

Show that \(\frac{{\cos A + \sin A}}{{\cos A – \sin A}} = \sec 2A + \tan 2A\) .

▶️Answer/Explanation

Markscheme

METHOD 1

\(\frac{{\cos A + \sin A}}{{\cos A – \sin A}} = \sec 2A + \tan 2A\)

consider right hand side

\(\sec 2A + \tan 2A = \frac{1}{{\cos 2A}} + \frac{{\sin 2A}}{{\cos 2A}}\)     M1A1

\( = \frac{{{{\cos }^2}A + 2\sin A\cos A + {{\sin }^2}A}}{{{{\cos }^2}A – {{\sin }^2}A}}\)     A1A1 

Note: Award A1 for recognizing the need for single angles and A1 for recognizing \({\cos ^2}A + {\sin ^2}A = 1\) .

\( = \frac{{{{(\cos A + \sin A)}^2}}}{{(\cos A + \sin A)(\cos A – \sin A)}}\)     M1A1

\( = \frac{{\cos A + \sin A}}{{\cos A – \sin A}}\)     AG

 

METHOD 2

\(\frac{{\cos A + \sin A}}{{\cos A – \sin A}} = \frac{{{{(\cos A + \sin A)}^2}}}{{(\cos A + \sin A)(\cos A – \sin A)}}\)     M1A1

\( = \frac{{{{\cos }^2}A + 2\sin A\cos A + {{\sin }^2}A}}{{{{\cos }^2}A – {{\sin }^2}A}}\)     A1A1 

Note: Award A1 for correct numerator and A1 for correct denominator.

 

\( = \frac{{1 + \sin 2A}}{{\cos 2A}}\)     M1A1

\( = \sec 2A + \tan 2A\)     AG

[6 marks]

Examiners report

Solutions to this question were good in general with many candidates realising that multiplying the numerator and denominator by \((\cos A + \sin A)\) might be helpful.

 

Question

Show that \(\cot \alpha  = \tan \left( {\frac{\pi }{2} – \alpha } \right)\) for \(0 < \alpha  < \frac{\pi }{2}\).

[1]
a.

Hence find \(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x,{\text{ }}0 < \alpha  < \frac{\pi }{2}} \).

[4]
b.
▶️Answer/Explanation

Markscheme

EITHER

use of a diagram and trig ratios

eg,

\(\tan \alpha  = \frac{O}{A} \Rightarrow \cot \alpha  = \frac{A}{O}\)

from diagram, \(\tan \left( {\frac{\pi }{2} – \alpha } \right) = \frac{A}{O}\)     R1

OR

use of \(\tan \left( {\frac{\pi }{2} – \alpha } \right) = \frac{{\sin \left( {\frac{\pi }{2} – \alpha } \right)}}{{\cos \left( {\frac{\pi }{2} – \alpha } \right)}} = \frac{{\cos \alpha }}{{\sin \alpha }}\)     R1

THEN

\(\cot \alpha  = \tan \left( {\frac{\pi }{2} – \alpha } \right)\)     AG

[1 mark]

a.

\(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x}  = [\arctan x]_{\tan \alpha }^{\cot \alpha }\)     (A1)

Note:     Limits (or absence of such) may be ignored at this stage.

\( = \arctan (\cot \alpha ) – \arctan (\tan \alpha )\)     (M1)

\( = \frac{\pi }{2} – \alpha  – \alpha \)     (A1)

\( = \frac{\pi }{2} – 2\alpha \)     A1

[4 marks]

b.

Examiners report

This was generally well done.

a.

This was generally well done. Some weaker candidates tried to solve part (b) through use of a substitution, though the standard result \(\arctan x\) was well known. A small number used \(\arctan x + c\) and went on to obtain an incorrect final answer.

b.

Question

Find the value of \(\sin \frac{\pi }{4} + \sin \frac{{3\pi }}{4} + \sin \frac{{5\pi }}{4} + \sin \frac{{7\pi }}{4} + \sin \frac{{9\pi }}{4}\).

[2]
a.

Show that \(\frac{{1 – \cos 2x}}{{2\sin x}} \equiv \sin x,{\text{ }}x \ne k\pi \) where \(k \in \mathbb{Z}\).

[2]
b.

Use the principle of mathematical induction to prove that

\(\sin x + \sin 3x +  \ldots  + \sin (2n – 1)x = \frac{{1 – \cos 2nx}}{{2\sin x}},{\text{ }}n \in {\mathbb{Z}^ + },{\text{ }}x \ne k\pi \) where \(k \in \mathbb{Z}\).

[9]
c.

Hence or otherwise solve the equation \(\sin x + \sin 3x = \cos x\) in the interval \(0 < x < \pi \).

[6]
d.
▶️Answer/Explanation

Markscheme

\(\sin \frac{\pi }{4} + \sin \frac{{3\pi }}{4} + \sin \frac{{5\pi }}{4} + \sin \frac{{7\pi }}{4} + \sin \frac{{9\pi }}{4} = \frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2} – \frac{{\sqrt 2 }}{2} – \frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{2}\)    (M1)A1

Note: Award M1 for 5 equal terms with \) + \) or \( – \) signs.

[2 marks]

a.

\(\frac{{1 – \cos 2x}}{{2\sin x}} \equiv \frac{{1 – (1 – 2{{\sin }^2}x)}}{{2\sin x}}\)    M1

\( \equiv \frac{{2{{\sin }^2}x}}{{2\sin x}}\)    A1

\( \equiv \sin x\)    AG

[2 marks]

b.

let \({\text{P}}(n):\sin x + \sin 3x +  \ldots  + \sin (2n – 1)x \equiv \frac{{1 – \cos 2nx}}{{2\sin x}}\)

if \(n = 1\)

\({\text{P}}(1):\frac{{1 – \cos 2x}}{{2\sin x}} \equiv \sin x\) which is true (as proved in part (b))     R1

assume \({\text{P}}(k)\) true, \(\sin x + \sin 3x +  \ldots  + \sin (2k – 1)x \equiv \frac{{1 – \cos 2kx}}{{2\sin x}}\)     M1

Notes: Only award M1 if the words “assume” and “true” appear. Do not award M1 for “let \(n = k\)only. Subsequent marks are independent of this M1.

consider \({\text{P}}(k + 1)\):

\({\text{P}}(k + 1):\sin x + \sin 3x +  \ldots  + \sin (2k – 1)x + \sin (2k + 1)x \equiv \frac{{1 – \cos 2(k + 1)x}}{{2\sin x}}\)

\(LHS = \sin x + \sin 3x +  \ldots  + \sin (2k – 1)x + \sin (2k + 1)x\)    M1

\( \equiv \frac{{1 – \cos 2kx}}{{2\sin x}} + \sin (2k + 1)x\)    A1

\( \equiv \frac{{1 – \cos 2kx + 2\sin x\sin (2k + 1)x}}{{2\sin x}}\)

\( \equiv \frac{{1 – \cos 2kx + 2\sin x\cos x\sin 2kx + 2{{\sin }^2}x\cos 2kx}}{{2\sin x}}\)    M1

\( \equiv \frac{{1 – \left( {(1 – 2{{\sin }^2}x)\cos 2kx – \sin 2x\sin 2kx} \right)}}{{2\sin x}}\)    M1

\( \equiv \frac{{1 – (\cos 2x\cos 2kx – \sin 2x\sin 2kx)}}{{2\sin x}}\)    A1

\( \equiv \frac{{1 – \cos (2kx + 2x)}}{{2\sin x}}\)    A1

\( \equiv \frac{{1 – \cos 2(k + 1)x}}{{2\sin x}}\)

so if true for \(n = k\) , then also true for \(n = k + 1\)

as true for \(n = 1\) then true for all \(n \in {\mathbb{Z}^ + }\)     R1

Note: Accept answers using transformation formula for product of sines if steps are shown clearly.

Note: Award R1 only if candidate is awarded at least 5 marks in the previous steps.

[9 marks]

c.

EITHER

\(\sin x + \sin 3x = \cos x \Rightarrow \frac{{1 – \cos 4x}}{{2\sin x}} = \cos x\)    M1

\( \Rightarrow 1 – \cos 4x = 2\sin x\cos x,{\text{ }}(\sin x \ne 0)\)    A1

\( \Rightarrow 1 – (1 – 2{\sin ^2}2x) = \sin 2x\)    M1

\( \Rightarrow \sin 2x(2\sin 2x – 1) = 0\)    M1

\( \Rightarrow \sin 2x = 0\) or \(\sin 2x = \frac{1}{2}\)     A1

\(2x = \pi ,{\text{ }}2x = \frac{\pi }{6}\) and \(2x = \frac{{5\pi }}{6}\)

OR

\(\sin x + \sin 3x = \cos x \Rightarrow 2\sin 2x\cos x = \cos x\)    M1A1

\( \Rightarrow (2\sin 2x – 1)\cos x = 0,{\text{ }}(\sin x \ne 0)\)    M1A1

\( \Rightarrow \sin 2x = \frac{1}{2}\) of \(\cos x = 0\)    A1

\(2x = \frac{\pi }{6},{\text{ }}2x = \frac{{5\pi }}{6}\) and \(x = \frac{\pi }{2}\)

THEN

\(\therefore x = \frac{\pi }{2},{\text{ }}x = \frac{\pi }{{12}}\) and \(x = \frac{{5\pi }}{{12}}\)     A1

Note: Do not award the final A1 if extra solutions are seen.

[6 marks]

d.

Examiners report

[N/A]

a.

[N/A]

b.

[N/A]

c.

[N/A]

d.
Scroll to Top