IBDP Maths AHL 3.9 Reciprocal trigonometric ratios AA HL Paper 1- Exam Style Questions- New Syllabus
▶️ Answer/Explanation
Attempt to use a right-angled triangle:
Correct placement of all three values and θ seen in the triangle
cot θ < 0 (since cosec θ > 0 puts θ in the second quadrant)
\( \cot \theta = -\frac{\sqrt{5}}{2} \)
Attempt to use \( 1 + \cot^2 \theta = \csc^2 \theta \)
\( 1 + \cot^2 \theta = \frac{9}{4} \)
\( \cot^2 \theta = \frac{5}{4} \)
\( \cot \theta = \pm \frac{\sqrt{5}}{2} \)
cot θ < 0 (since cosec θ > 0 puts θ in the second quadrant)
\( \cot \theta = -\frac{\sqrt{5}}{2} \)
\( \sin \theta = \frac{2}{3} \)
Attempt to use \( \sin^2 \theta + \cos^2 \theta = 1 \)
\( \frac{4}{9} + \cos^2 \theta = 1 \)
\( \cos^2 \theta = \frac{5}{9} \)
\( \cos \theta = \pm \frac{\sqrt{5}}{3} \)
cos θ < 0 (since θ is in the second quadrant)
\( \cos \theta = -\frac{\sqrt{5}}{3} \)
\( \cot \theta = \frac{\cos \theta}{\sin \theta} = -\frac{\sqrt{5}}{2} \)
▶️ Answer/Explanation
Consider right hand side:
\(\sec 2A + \tan 2A = \frac{1}{\cos 2A} + \frac{\sin 2A}{\cos 2A}\) (M1A1)
\(= \frac{\cos^2 A + 2\sin A \cos A + \sin^2 A}{\cos^2 A – \sin^2 A}\) (A1A1)
Note: Award A1 for recognizing the need for single angles and A1 for recognizing \(\cos^2 A + \sin^2 A = 1\).
\(= \frac{(\cos A + \sin A)^2}{(\cos A + \sin A)(\cos A – \sin A)}\) (M1A1)
\(= \frac{\cos A + \sin A}{\cos A – \sin A}\) (AG)
\(\frac{\cos A + \sin A}{\cos A – \sin A} = \frac{(\cos A + \sin A)^2}{(\cos A + \sin A)(\cos A – \sin A)}\) (M1A1)
\(= \frac{\cos^2 A + 2\sin A \cos A + \sin^2 A}{\cos^2 A – \sin^2 A}\) (A1A1)
Note: Award A1 for correct numerator and A1 for correct denominator.
\(= \frac{1 + \sin 2A}{\cos 2A}\) (M1A1)
\(= \sec 2A + \tan 2A\) (AG)
▶️ Answer/Explanation
Use of a diagram and trig ratios:

\(\tan \alpha = \frac{O}{A} \Rightarrow \cot \alpha = \frac{A}{O}\)
From diagram, \(\tan \left( \frac{\pi}{2} – \alpha \right) = \frac{A}{O}\) (R1)
Use of trigonometric identity:
\(\tan \left( \frac{\pi}{2} – \alpha \right) = \frac{\sin \left( \frac{\pi}{2} – \alpha \right)}{\cos \left( \frac{\pi}{2} – \alpha \right)} = \frac{\cos \alpha}{\sin \alpha}\) (R1)
\(\cot \alpha = \tan \left( \frac{\pi}{2} – \alpha \right)\) (AG)
[1 mark]
\(\int_{\tan \alpha}^{\cot \alpha} \frac{1}{1 + x^2} \, dx = [\arctan x]_{\tan \alpha}^{\cot \alpha}\) (A1)
Note: Limits may be ignored at this stage.
\(= \arctan (\cot \alpha) – \arctan (\tan \alpha)\) (M1)
Using part (a):
\(= \arctan \left( \tan \left( \frac{\pi}{2} – \alpha \right) \right) – \alpha\)
\(= \frac{\pi}{2} – \alpha – \alpha\) (A1)
\(= \frac{\pi}{2} – 2\alpha\) A1
[4 marks]
▶️ Answer/Explanation
\(\sin \frac{\pi}{4} + \sin \frac{3\pi}{4} + \sin \frac{5\pi}{4} + \sin \frac{7\pi}{4} + \sin \frac{9\pi}{4}\)
\(= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} – \frac{\sqrt{2}}{2} – \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}\) (M1)A1
Note: Award M1 for 5 terms with correct signs.
[2 marks]
\(\frac{1 – \cos 2x}{2\sin x} \equiv \frac{1 – (1 – 2\sin^2 x)}{2\sin x}\) M1
\(\equiv \frac{2\sin^2 x}{2\sin x}\) A1
\(\equiv \sin x\) AG
[2 marks]
Base case (n=1):
\(\frac{1 – \cos 2x}{2\sin x} \equiv \sin x\) (from part b) R1
Inductive step:
Assume true for n=k: \(\sum_{i=1}^k \sin(2i-1)x = \frac{1 – \cos 2kx}{2\sin x}\) M1
For n=k+1:
\(\sum_{i=1}^{k+1} \sin(2i-1)x = \frac{1 – \cos 2kx}{2\sin x} + \sin(2k+1)x\) A1
\(= \frac{1 – \cos 2kx + 2\sin x \sin(2k+1)x}{2\sin x}\) M1
Using trigonometric identities:
\(= \frac{1 – [\cos 2kx – 2\sin x \sin(2k+1)x]}{2\sin x}\) M1
\(= \frac{1 – \cos(2kx + 2x)}{2\sin x}\) A1
\(= \frac{1 – \cos 2(k+1)x}{2\sin x}\) A1
Conclusion: True for n=1, and if true for n=k then true for n=k+1.
Therefore true for all positive integers n by induction. R1
[9 marks]
Using part (c) with n=2:
\(\sin x + \sin 3x = \frac{1 – \cos 4x}{2\sin x} = \cos x\) M1
\(\Rightarrow 1 – \cos 4x = 2\sin x \cos x\) A1
\(\Rightarrow 2\sin^2 2x = \sin 2x\) M1
\(\Rightarrow \sin 2x(2\sin 2x – 1) = 0\) M1
Solutions in \(0 < x < \pi\):
\(\sin 2x = 0 \Rightarrow x = \frac{\pi}{2}\)
\(\sin 2x = \frac{1}{2} \Rightarrow x = \frac{\pi}{12}, \frac{5\pi}{12}\) A1A1
✅ Final solutions: \(x = \frac{\pi}{12}, \frac{\pi}{2}, \frac{5\pi}{12}\)
[6 marks]