Home / IBDP Maths AHL 3.9 Reciprocal trigonometric ratios AA HL Paper 2- Exam Style Questions

IBDP Maths AHL 3.9 Reciprocal trigonometric ratios AA HL Paper 2- Exam Style Questions

IBDP Maths AHL 3.9 Reciprocal trigonometric ratios AA HL Paper 2- Exam Style Questions- New Syllabus

Question

Points \( A \), \( B \), and \( T \) lie on a line on an indoor soccer field. The goal, \( [AB] \), is 2 metres wide. A player at point \( P \) kicks a ball at the goal. \( [PT] \) is perpendicular to \( (AB) \) and is 6 metres from a parallel line through the centre of \( [AB] \). Let \( PT = x \) metres and \( \alpha = \angle APB \), measured in degrees. Assume the ball travels along the floor.

Soccer Goal Diagram

The maximum for \( \tan \alpha \) gives the maximum for \( \alpha \).

a. Find the value of \( \alpha \) when \( x = 10 \). [4]

b. Show that \( \tan \alpha = \frac{2x}{x^2 + 35} \). [4]

c.

(i) Find \( \frac{\text{d}}{\text{d}x}(\tan \alpha) \). [3]

(ii) Hence or otherwise find the value of \( \alpha \) such that \( \frac{\text{d}}{\text{d}x}(\tan \alpha) = 0 \). [4]

(iii) Find \( \frac{\text{d}^2}{\text{d}x^2}(\tan \alpha) \) and hence show that the value of \( \alpha \) never exceeds 10°. [4]

d. Find the set of values of \( x \) for which \( \alpha \geqslant 7^\circ \). [3]

▶️ Answer/Explanation
Markscheme Solution

a. [4 marks]

METHOD 1:
\( \alpha = \angle APT – \angle BPT \). For \( x = 10 \), in \( \triangle APT \): \( \tan \angle APT = \frac{7}{10} \), so \( \angle APT = \arctan \frac{7}{10} \approx 34.992^\circ \) (A1). In \( \triangle BPT \): \( \tan \angle BPT = \frac{5}{10} \), so \( \angle BPT = \arctan \frac{5}{10} \approx 26.565^\circ \) (A1). Thus, \( \alpha = 34.992^\circ – 26.565^\circ \approx 8.43^\circ \) (M1)(A1).
Answer: \( \alpha = 8.43^\circ \).

METHOD 2:
\( \alpha = \angle PBT – \angle PAT \). In \( \triangle PBT \): \( \tan \angle PBT = \frac{10}{5} = 2 \), so \( \angle PBT \approx 63.434^\circ \) (A1). In \( \triangle PAT \): \( \tan \angle PAT = \frac{10}{7} \), so \( \angle PAT \approx 55.008^\circ \) (A1). Thus, \( \alpha = 63.434^\circ – 55.008^\circ \approx 8.43^\circ \) (M1)(A1).
Answer: \( \alpha = 8.43^\circ \).

METHOD 3:
Use cosine rule in \( \triangle APB \): \( \cos \alpha = \frac{PA^2 + PB^2 – AB^2}{2 \cdot PA \cdot PB} \). Compute: \( PA = \sqrt{10^2 + 7^2} = \sqrt{149} \), \( PB = \sqrt{10^2 + 5^2} = \sqrt{125} \), \( AB = 2 \). Numerator: \( 149 + 125 – 4 = 270 \). Denominator: \( 2 \cdot \sqrt{149} \cdot \sqrt{125} \) (A1)(A1). Thus, \( \cos \alpha = \frac{270}{2 \cdot \sqrt{149} \cdot \sqrt{125}} \), so \( \alpha \approx 8.43^\circ \) (M1)(A1).
Answer: \( \alpha = 8.43^\circ \).

b. [4 marks]

METHOD 1:
Use \( \tan \alpha = \tan (\angle APT – \angle BPT) = \frac{\tan \angle APT – \tan \angle BPT}{1 + \tan \angle APT \cdot \tan \angle BPT} \). In \( \triangle APT \): \( \tan \angle APT = \frac{7}{x} \) (A1). In \( \triangle BPT \): \( \tan \angle BPT = \frac{5}{x} \) (A1). Thus, \( \tan \alpha = \frac{\frac{7}{x} – \frac{5}{x}}{1 + \frac{7}{x} \cdot \frac{5}{x}} = \frac{\frac{2}{x}}{1 + \frac{35}{x^2}} = \frac{2x}{x^2 + 35} \) (M1)(A1).
Answer: \( \tan \alpha = \frac{2x}{x^2 + 35} \).

METHOD 2:
Use \( \tan \alpha = \tan (\angle PBT – \angle PAT) = \frac{\tan \angle PBT – \tan \angle PAT}{1 + \tan \angle PBT \cdot \tan \angle PAT} \). In \( \triangle PBT \): \( \tan \angle PBT = \frac{x}{5} \) (A1). In \( \triangle PAT \): \( \tan \angle PAT = \frac{x}{7} \) (A1). Thus, \( \tan \alpha = \frac{\frac{x}{5} – \frac{x}{7}}{1 + \frac{x}{5} \cdot \frac{x}{7}} = \frac{\frac{2x}{35}}{1 + \frac{x^2}{35}} = \frac{2x}{x^2 + 35} \) (M1)(A1).
Answer: \( \tan \alpha = \frac{2x}{x^2 + 35} \).

METHOD 3:
In \( \triangle APB \), use cosine rule: \( \cos \alpha = \frac{PA^2 + PB^2 – AB^2}{2 \cdot PA \cdot PB} = \frac{x^2 + 49 + x^2 + 25 – 4}{2 \cdot \sqrt{x^2 + 49} \cdot \sqrt{x^2 + 25}} = \frac{x^2 + 35}{\sqrt{(x^2 + 25)(x^2 + 49)}} \) (M1)(A1). Then, \( \sin \alpha = \frac{2x}{\sqrt{(x^2 + 25)(x^2 + 49)}} \) (A1). Thus, \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{2x}{x^2 + 35} \) (M1).
Answer: \( \tan \alpha = \frac{2x}{x^2 + 35} \).

c. [11 marks]

(i) Differentiate \( \tan \alpha = \frac{2x}{x^2 + 35} \): Use quotient rule: \( \frac{\text{d}}{\text{d}x}(\tan \alpha) = \frac{(2)(x^2 + 35) – (2x)(2x)}{(x^2 + 35)^2} = \frac{2x^2 + 70 – 4x^2}{(x^2 + 35)^2} = \frac{70 – 2x^2}{(x^2 + 35)^2} \) (M1)(A1)(A1).
Answer: \( \frac{\text{d}}{\text{d}x}(\tan \alpha) = \frac{70 – 2x^2}{(x^2 + 35)^2} \).

(ii) METHOD 1:
Set \( \frac{\text{d}}{\text{d}x}(\tan \alpha) = 0 \): \( 70 – 2x^2 = 0 \implies x^2 = 35 \implies x = \sqrt{35} \approx 5.916 \) m (M1)(A1). Then, \( \tan \alpha = \frac{2 \cdot \sqrt{35}}{35 + 35} = \frac{1}{\sqrt{35}} \approx 0.16903 \) (A1). Thus, \( \alpha = \arctan \frac{1}{\sqrt{35}} \approx 9.59^\circ \) (A1).
Answer: \( \alpha = 9.59^\circ \).

METHOD 2:
For \( \alpha = \arctan \left( \frac{2x}{x^2 + 35} \right) \), compute derivative: \( \frac{\text{d}\alpha}{\text{d}x} = \frac{1}{1 + \left( \frac{2x}{x^2 + 35} \right)^2} \cdot \frac{70 – 2x^2}{(x^2 + 35)^2} \). Set \( \frac{\text{d}\alpha}{\text{d}x} = 0 \): \( 70 – 2x^2 = 0 \implies x = \sqrt{35} \) (M1)(A1). Then, \( \alpha = \arctan \frac{2 \cdot \sqrt{35}}{35 + 35} = \arctan \frac{1}{\sqrt{35}} \approx 9.59^\circ \) (A1)(A1).
Answer: \( \alpha = 9.59^\circ \).

(iii) Differentiate \( \frac{\text{d}}{\text{d}x}(\tan \alpha) = \frac{70 – 2x^2}{(x^2 + 35)^2} \): Use quotient rule: \( \frac{\text{d}^2}{\text{d}x^2}(\tan \alpha) = \frac{(-4x)(x^2 + 35)^2 – (70 – 2x^2) \cdot 2(x^2 + 35) \cdot 2x}{(x^2 + 35)^4} = \frac{-4x(x^2 + 35)^2 – 4x(70 – 2x^2)(x^2 + 35)}{(x^2 + 35)^4} = \frac{4x(x^2 – 105)}{(x^2 + 35)^3} \) (M1)(A1). At \( x = \sqrt{35} \), \( \frac{\text{d}^2}{\text{d}x^2}(\tan \alpha) = \frac{4 \sqrt{35} (35 – 105)}{(35 + 35)^3} < 0 \), confirming a maximum (M1)(R1). Since \( \alpha \approx 9.59^\circ < 10^\circ \), \( \alpha \) never exceeds 10° (A1).
Answer: \( \alpha \leq 9.59^\circ \).

d. [3 marks]

Solve \( \tan \alpha \geq \tan 7^\circ \): \( \frac{2x}{x^2 + 35} \geq \tan 7^\circ \approx 0.1228 \) (M1). Solve \( \frac{2x}{x^2 + 35} = 0.1228 \): \( 2x = 0.1228 (x^2 + 35) \implies 0 = 0.1228 x^2 – 2x + 4.298 \). Quadratic formula gives \( x \approx 2.55, 13.7 \) (A1). Since \( \tan \alpha \) is maximized at \( x = \sqrt{35} \), test interval: \( 2.55 \leq x \leq 13.7 \) (A1).
Answer: \( 2.55 \leq x \leq 13.7 \) m.

Scroll to Top