Home / IBDP Maths analysis and approaches Topic: AHL 3.10 :Compound angle identities HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 3.10 :Compound angle identities HL Paper 1

Question

Consider the functions \( f(x)=cos x\) and \(g(x)=sin 2x\), where \(0\leq x\leq \pi \).

The graph of intersects the graph of g at the point A, the point B \(\left ( \frac{\pi }{2},0 \right )\)  and the point C as shown on the following diagram.

(a) Find the x-coordinate of point A and the x-coordinate of point C.

The shaded region R is enclosed by the graph of f and the graph of g between the points B and C. 

(b) Find the area of R.

▶️Answer/Explanation

Ans:

(a) recognising \(cos x=2sin x cos x\)

       \(cos x\neq 0\) so \(sin x=\frac{1}{2}\) OR one correct value (accept degrees)

        x-coordinates \(\frac{\pi }{6}\) and \(\frac{5\pi }{6}\)

(b) METHOD 1

       attempt to integrate \(\pm (cos x-sin 2x)\)

       \(\int_{\frac{\pi }{2}}^{\frac{5\pi }{6}}(cos x – sin 2x)dx\)  OR  \(\int_{\frac{\pi }{2}}^{\frac{5\pi }{6}}(cos x – 2 sin x cos x)dx\)

       \(=\left [ sin x +\frac{1}{2}cos 2x \right ]_{\frac{\pi }{2}}^{\frac{5\pi }{6}}\)  OR  \(=\left [ sin x – sin^{2}x \right ]_{\frac{\pi }{2}}^{\frac{5\pi }{6}}\)

       attempt to substitute their limits into their integral and subtract

      \(=\left ( sin\left ( \frac{5\pi }{6} \right )+\frac{1}{2}cos\left ( \frac{5\pi }{3} \right ) \right )-\left ( sin\left ( \frac{\pi }{2} \right )+\frac{1}{2}cos(\pi ) \right )\)  OR  \(=\left ( sin\left ( \frac{5\pi }{6} \right )-sin^{2}\left ( \frac{5\pi }{6} \right ) \right )-\left ( sin\left ( \frac{\pi }{2} \right )-sin^{2}\left ( \frac{\pi }{2} \right )\right)\)

      \(=\left ( \frac{1}{2}+\frac{1}{4} \right )-\left ( 1-\frac{1}{2} \right )\)  OR  \(=\left ( \frac{1}{2}-\frac{1}{4} \right )-\left ( 1-1 \right )\)

     area = \(\frac{1}{4}\)

     METHOD 2

     \(\int_{\frac{\pi }{2}}^{\frac{5\pi }{6}}cos xdx=\left [ sin x \right ]_{\frac{\pi }{2}}^{\frac{5\pi }{6}}\)  and  \(\int_{\frac{\pi }{2}}^{\frac{5\pi }{6}}sin2xdx=\left [ -\frac{1}{2}cos2x \right ]_{\frac{\pi }{2}}^{\frac{5\pi }{6}}\)

      attempt to substitute their limits into their integral and subtract (for both integrals)

      \(sin\left ( \frac{5\pi }{6} \right )-sin\left ( \frac{\pi }{2} \right )\)  and  \(-\frac{1}{2}cos\left ( \frac{5\pi }{3} \right )+\frac{1}{2}cos\left ( \pi \right )\)

      attempt to subtract the two integrals in either order (seen anywhere)

      \(\left ( sin\left ( \frac{5\pi }{6} \right )-sin\left ( \frac{\pi }{2} \right ) \right )-\left ( -\frac{1}{2}cos\left ( \frac{5\pi }{3} \right )+\frac{1}{2}cos(\pi ) \right )\)  OR  \(\int_{\frac{\pi }{2}}^{\frac{5\pi }{6}}cos xdx-\int_{\frac{\pi }{2}}^{\frac{5\pi }{6}}sin2xdx\)

      \(=\left ( \frac{1}{2}-1 \right )-\left ( \frac{1}{4}-\frac{1}{2} \right )\left ( =-\frac{1}{4} \right )\)

       area = \(\frac{1}{4}\)

Detailed Solution

(a)  Given functions \( f(x)=cos x\) and \(g(x)=sin 2x\)

we know sin2x = 2sinxcosx

to find the intersection points between f(x) and (g(x), we equate f(x)  =   g(x)

therefore    cos x  = 2sinxcosx

                    cos x – 2sinxcosx = 0

                    cos x (1- 2sinx) = 0

                    cos x = 0 ,   therefore x =\( \frac{\Pi}{2} \)   and

                     1- 2sinx = 0   ,  sinx = \( \frac{1}{2} \)  therefore

                    x = \(\frac{\Pi}{6}\)\(\frac{5\Pi }{6}\)

(b)  The shaded region R is enclosed between the points B (x= \( \frac{\Pi}{2} \) ) and C (x=\(\frac{5\Pi }{6}\))

Therefore, area of the shaded region R = \(\int_{\frac{\pi }{2}}^{\frac{5\pi }{6}}(f(x) – g(x))dx\) 

                                                                        =  \(\int_{\frac{\pi }{2}}^{\frac{5\pi }{6}}(cos x – sin 2x)dx\) 

                                                                        =  \(=\left [ sin x +\frac{1}{2}cos 2x \right ]_{\frac{\pi }{2}}^{\frac{5\pi }{6}}\) 

                                                                        = \(=\left ( sin\left ( \frac{5\pi }{6} \right )+\frac{1}{2}cos\left ( \frac{5\pi }{3} \right ) \right )-\left ( sin\left ( \frac{\pi }{2} \right )+\frac{1}{2}cos(\pi ) \right )\) 

                                                                         =  \(=\left ( sin\left ( \frac{5\pi }{6} \right )-sin^{2}\left ( \frac{5\pi }{6} \right ) \right )-\left ( sin\left ( \frac{\pi }{2} \right )-sin^{2}\left ( \frac{\pi }{2} \right )\right)\)

substituting the values  we get

                                                                          \(=\left ( \frac{1}{2}-1 \right )-\left ( \frac{1}{4}-\frac{1}{2} \right )\left ( =-\frac{1}{4} \right )\)

                                                                    area = \(\frac{1}{4}\)

Question

In the diagram below, AD is perpendicular to BC.

CD  =  4, BD  =  2 and AD  =  3. \({\rm{C}}\hat {\rm{A}}{\rm{D}} = \alpha \) and \({\rm{B}}\hat {\rm{A}}{\rm{D}} = \beta \) .

 

Find the exact value of \(\cos (\alpha  – \beta )\) .

▶️Answer/Explanation

Markscheme

METHOD 1

\({\text{AC}} = 5\) and \(\text{AB} = \sqrt {13}\)   (may be seen on diagram)     (A1)

\(\cos \alpha = \frac{3}{5}\) and \(\sin \alpha = \frac{4}{5}\)     (A1)

\(\cos \beta = \frac{3}{{\sqrt {13} }}\) and \(\sin \beta = \frac{2}{{\sqrt {13} }}\)     (A1) 

Note: If only the two cosines are correctly given award (A1)(A1)(A0).

 

Use of \(\cos (\alpha – \beta ) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \)     (M1)

\( = \frac{3}{5} \times \frac{3}{{\sqrt {13} }} + \frac{4}{5} \times \frac{2}{{\sqrt {13} }}\)   (substituting)     M1

\( = \frac{{17}}{{5\sqrt {13} }}\)     \(\left( { = \frac{{17\sqrt {13} }}{{65}}} \right)\)     A1     N1

[6 marks]

 

METHOD 2

\({\text{AC}} = 5\) amd \({\text{AB}} = \sqrt {13} \)   (may be seen on diagram)     (A1)

Use of \(\cos (\alpha + \beta ) = \frac{{{\text{A}}{{\text{C}}^2} + {\text{A}}{{\text{B}}^2} – {\text{B}}{{\text{C}}^2}}}{{{\text{2(AC)(AB)}}}}\)     (M1)

\( = \frac{{25 + 13 – 36}}{{2 \times 5 \times \sqrt {13} }}\,\,\,\,\,\left( { = \frac{1}{{5\sqrt {13} }}} \right)\)     A1

Use of \(\cos (\alpha + \beta ) + \cos (\alpha – \beta ) = 2\cos \alpha \cos \beta \)     (M1)

\(\cos \alpha = \frac{3}{5}\) and \(\cos \beta = \frac{3}{{\sqrt {13} }}\)     (A1)

\(\cos (\alpha – \beta ) = \frac{{17}}{{5\sqrt {13} }}\,\,\,\,\,\left( { = 2 \times \frac{3}{5} \times \frac{3}{{\sqrt {13} }} – \frac{1}{{5\sqrt {13} }}} \right){\text{ }}\left( { = \frac{{17\sqrt {13} }}{{65}}} \right)\)     A1     N1

[6 marks]

 

Question

(a)     Show that \(\sin 2nx = \sin \left( {(2n + 1)x} \right)\cos x – \cos \left( {(2n + 1)x} \right)\sin x\).

(b)     Hence prove, by induction, that

\[\cos x + \cos 3x + \cos 5x +  \ldots  + \cos \left( {(2n – 1)x} \right) = \frac{{\sin 2nx}}{{2\sin x}},\]

for all \(n \in {\mathbb{Z}^ + }{\text{, }}\sin x \ne 0\).

(c)     Solve the equation \(\cos x + \cos 3x = \frac{1}{2},{\text{ }}0 < x < \pi \).

▶️Answer/Explanation

Markscheme

(a)     \(\sin (2n + 1)x\cos x – \cos (2n + 1)x\sin x = \sin (2n + 1)x – x\)     M1A1

\( = \sin 2nx\)     AG

[2 marks]

(b)     if n = 1     M1

\({\text{LHS}} = \cos x\)

\({\text{RHS}} = \frac{{\sin 2x}}{{2\sin x}} = \frac{{2\sin x\cos x}}{{2\sin x}} = \cos x\)     M1

so LHS = RHS and the statement is true for n = 1     R1

assume true for n = k     M1

Note: Only award M1 if the word true appears.

   Do not award M1 for ‘let n = k’ only.

   Subsequent marks are independent of this M1.

 

so \(\cos x + \cos 3x + \cos 5x +  \ldots  + \cos (2k – 1)x = \frac{{\sin 2kx}}{{2\sin x}}\)

if n = k + 1 then

\(\cos x + \cos 3x + \cos 5x +  \ldots  + \cos (2k – 1)x + \cos (2k + 1)x\)     M1

\( = \frac{{\sin 2kx}}{{2\sin x}} + \cos (2k + 1)x\)     A1

\( = \frac{{\sin 2kx + 2\cos (2k + 1)x\sin x}}{{2\sin x}}\)     M1

\( = \frac{{\sin (2k + 1)x\cos x – \cos (2k + 1)x\sin x + 2\cos (2k + 1)x\sin x}}{{2\sin x}}\)     M1

\( = \frac{{\sin (2k + 1)x\cos x + \cos (2k + 1)x\sin x}}{{2\sin x}}\)     A1

\( = \frac{{\sin (2k + 2)x}}{{2\sin x}}\)     M1

\( = \frac{{\sin 2(k + 1)x}}{{2\sin x}}\)     A1

so if true for n = k, then also true for n = k + 1

as true for n = 1 then true for all \(n \in {\mathbb{Z}^ + }\)     R1

Note: Final R1 is independent of previous work.

[12 marks]

(c)     \(\frac{{\sin 4x}}{{2\sin x}} = \frac{1}{2}\)     M1A1

\(\sin 4x = \sin x\)

\(4x = x \Rightarrow x = 0\) but this is impossible

\(4x = \pi – x \Rightarrow x = \frac{\pi }{5}\)     A1

\(4x = 2\pi + x \Rightarrow x = \frac{{2\pi }}{3}\)     A1

\(4x = 3\pi – x \Rightarrow x = \frac{{3\pi }}{5}\)     A1

for not including any answers outside the domain     R1

Note: Award the first M1A1 for correctly obtaining \(8{\cos ^3}x – 4\cos x – 1 = 0\) or equivalent and subsequent marks as appropriate including the answers \(\left( { – \frac{1}{2},\frac{{1 \pm \sqrt 5 }}{4}} \right)\).

[6 marks] Total [20 marks]

 

 

Question

If x satisfies the equation \(\sin \left( {x + \frac{\pi }{3}} \right) = 2\sin x\sin \left( {\frac{\pi }{3}} \right)\), show that \(11\tan x = a + b\sqrt 3 \), where a, b \( \in {\mathbb{Z}^ + }\).

▶️Answer/Explanation

Markscheme

\(\sin \left( {x + \frac{\pi }{3}} \right) = \sin x\cos \left( {\frac{\pi }{3}} \right) + \cos x\sin \left( {\frac{\pi }{3}} \right)\)     (M1)

\(\sin x\cos \left( {\frac{\pi }{3}} \right) + \cos x\sin \left( {\frac{\pi }{3}} \right) = 2\sin x\sin \left( {\frac{\pi }{3}} \right)\)

\(\frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = 2 \times \frac{{\sqrt 3 }}{2}\sin x\)     A1

dividing by \(\cos x\) and rearranging     M1

\(\tan x = \frac{{\sqrt 3 }}{{2\sqrt 3 – 1}}\)     A1

rationalizing the denominator     M1

\(11\tan x = 6 + \sqrt 3 \)     A1

[6 marks]

 

Scroll to Top