IBDP Maths SL 3.8 Solving trigonometric equations AA HL Paper 1- Exam Style Questions- New Syllabus
▶️ Answer/Explanation
\( 3\cos^2x – 4\cos x – 2 = 0 \)
\( 3y^2 – 4y – 2 = 0 \)
\[ y = \frac{4 \pm \sqrt{(-4)^2 – 4 \cdot 3 \cdot (-2)}}{2 \cdot 3} = \frac{4 \pm \sqrt{16 + 24}}{6} = \frac{4 \pm \sqrt{40}}{6} = \frac{4 \pm 2\sqrt{10}}{6} = \frac{2 \pm \sqrt{10}}{3} \]
\( \cos x = \frac{2 + \sqrt{10}}{3} \approx 1.387 \) (not valid since \( \cos x \leq 1 \))
\( \cos x = \frac{2 – \sqrt{10}}{3} \approx -0.387 \)
\( x \approx 1.97 \) and \( x \approx 2\pi – 1.97 = 4.31 \)
Solve \(\tan(2x – 5^\circ) = 1\) for \(0^\circ \leq x \leq 180^\circ\).
▶️ Answer/Explanation
Solution:
Step 1: Solve for the General Solution
The general solution for \(\tan\theta = 1\) is:
\[ \theta = 45^\circ + k180^\circ, \quad k \in \mathbb{Z} \]
Setting \(\theta = 2x – 5^\circ\), we get:
\[ 2x – 5^\circ = 45^\circ + k180^\circ \]
Step 2: Solve for \(x\)
Rearrange for \(x\):
\[ 2x = 50^\circ + k180^\circ \]
\[ x = \frac{50^\circ + k180^\circ}{2} \]
Step 3: Find Solutions in the Given Range
For \(k = 0\):
\[ x = \frac{50^\circ}{2} = 25^\circ \]
For \(k = 1\):
\[ x = \frac{50^\circ + 180^\circ}{2} = \frac{230^\circ}{2} = 115^\circ \]
For \(k = 2\):
\[ x = \frac{50^\circ + 360^\circ}{2} = \frac{410^\circ}{2} = 205^\circ \]
Since \(205^\circ\) is outside the given range \(0^\circ \leq x \leq 180^\circ\), we discard this solution.
Final Answer:
\[ x = 25^\circ, 115^\circ \]
Markscheme:
Attempt to equate \(2x – 5^\circ\) to reference angle. (M1)
\[ 2x – 5^\circ = 45^\circ, 225^\circ \] A1
\[ x = 25^\circ, 115^\circ \] A1
[3 marks]
Find the least positive value of \(x\) for which \(\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}\).
▶️ Answer/Explanation
\[\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}\]
\[\frac{x}{2} + \frac{\pi}{3} = \frac{\pi}{4} \Rightarrow x = -\frac{\pi}{6} \text{ (rejected)}\]
\[\frac{x}{2} + \frac{\pi}{3} = \frac{7\pi}{4}\]
\[x = \frac{17\pi}{6}\]
Markscheme:
Determines \(\frac{\pi}{4}\) as reference angle (A1)
Attempts to solve \(\frac{x}{2} + \frac{\pi}{3} = \frac{\pi}{4}, \frac{7\pi}{4}\) (M1)
Correct solution \(x = \frac{17\pi}{6}\) (A1)

[3 marks]
Question
Show that sin \(\frac{sinxtanx}{1-cosx}= 1+\frac{1}{cosx}\) x ≠ 2nπ, n ∈ R . [3]
Hence determine the range of values of k for which \(\frac{sinxtanx}{1-cosx}\)= K has no real solutions. [4]
▶️Answer/Explanation
Ans:
(a)
METHOD 1
METHOD 2
(b)
METHOD 1
consider \(1+\frac{1}{cosx}\)= k, leasing to cosx= \(\frac{1}{k-1}\)
consider graoh of y= \(\frac{1}{y-1}\)or range of solutions for y= cosx
(no solutions if y<-1or y>1)\(\Rightarrow 0<k<2\)
METHOD 2
consider graph of y= 1+ sec x
no real solutions if 0<k<2
METHOD 3