IB Mathematics SL 3.2 Use of sine, cosine and tangent ratios AA SL Paper 1- Exam Style Questions- New Syllabus
The following diagram shows triangle \( ABC \), with \( AB = 10 \), \( BC = x \), and \( AC = 2x \).
Given that \( \cos \hat{C} = \frac{3}{4} \), find the area of the triangle. Give your answer in the form \( \frac{p \sqrt{q}}{2} \), where \( p, q \in \mathbb{Z}^+ \).
▶️ Answer/Explanation
Let \( F \) be the foot of the perpendicular from \( B \) to \( AC \).
In \( \triangle BCF \), since \( \cos \hat{C} = \frac{3}{4} \), we have:
\[ \cos \hat{C} = \frac{\text{CF}}{BC} = \frac{\text{CF}}{x} = \frac{3}{4} \]
\[ \text{CF} = \frac{3}{4} x \]
Apply Pythagoras’ theorem in \( \triangle BCF \):
\[ \text{BF}^2 = x^2 – \left( \frac{3}{4} x \right)^2 = x^2 – \frac{9}{16} x^2 = \frac{16}{16} x^2 – \frac{9}{16} x^2 = \frac{7}{16} x^2 \]
\[ \text{BF} = \sqrt{\frac{7}{16} x^2} = \frac{\sqrt{7}}{4} x \]
Since \( \text{AC} = 2x \), and \( \text{AC} = \text{AF} + \text{CF} \):
\[ \text{AF} = \text{AC} – \text{CF} = 2x – \frac{3}{4} x = \frac{8}{4} x – \frac{3}{4} x = \frac{5}{4} x \]
In \( \triangle ABF \), apply Pythagoras’ theorem:
\[ AB^2 = \text{AF}^2 + \text{BF}^2 \]
\[ 10^2 = \left( \frac{5}{4} x \right)^2 + \left( \frac{\sqrt{7}}{4} x \right)^2 \]
\[ 100 = \frac{25}{16} x^2 + \frac{7}{16} x^2 = \frac{25 + 7}{16} x^2 = \frac{32}{16} x^2 = 2 x^2 \]
\[ x^2 = 50 \]
Calculate the area of \( \triangle ABC \):
Area = \( \frac{1}{2} \cdot \text{base} \cdot \text{height} = \frac{1}{2} \cdot \text{AC} \cdot \text{BF} \).
\[ \text{Area} = \frac{1}{2} \cdot 2x \cdot \frac{\sqrt{7}}{4} x = \frac{1}{2} \cdot \frac{2 \sqrt{7}}{4} x^2 = \frac{\sqrt{7}}{4} x^2 \]
Substitute \( x^2 = 50 \):
\[ \text{Area} = \frac{\sqrt{7}}{4} \cdot 50 = \frac{50 \sqrt{7}}{4} = \frac{25 \sqrt{7}}{2} \]
Answer: The area of triangle \( ABC \) is \( \frac{25 \sqrt{7}}{2} \).