IBDP Maths SL 3.2 Use of sine, cosine and tangent ratios AA HL Paper 1- Exam Style Questions- New Syllabus
Consider an acute angle \( \theta \) such that \( \cos \theta = \frac{2}{3} \).
Part (a):
(i) Find the value of \( \sin \theta \). [2]
(ii) Find the value of \( \sin 2\theta \). [2]
Part (b):
Show that \( b = \frac{3a}{4} \). [2]
Part (c):
[BA] is extended to form an isosceles triangle DAC, as shown in the following diagram.
Find the value of \( \sin \angle CAD \). [3]
Part (d):
Find the area of triangle DAC, in terms of \( a \). [5]
▶️ Answer/Explanation
Part (a)(i)
Given \( \cos \theta = \frac{2}{3} \), and \( \theta \) is acute, find \( \sin \theta \).
Use the Pythagorean identity: \( \sin^2 \theta + \cos^2 \theta = 1 \).
\[ \sin^2 \theta = 1 – \cos^2 \theta = 1 – \left( \frac{2}{3} \right)^2 = 1 – \frac{4}{9} = \frac{5}{9} \]
Since \( \theta \) is acute (\( \sin \theta > 0 \)):
\[ \sin \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \]
Answer: \( \sin \theta = \frac{\sqrt{5}}{3} \)
Part (a)(ii)
Find \( \sin 2\theta \).
Use the double-angle formula: \( \sin 2\theta = 2 \sin \theta \cos \theta \).
From (a)(i), \( \sin \theta = \frac{\sqrt{5}}{3} \), and given \( \cos \theta = \frac{2}{3} \).
\[ \sin 2\theta = 2 \cdot \frac{\sqrt{5}}{3} \cdot \frac{2}{3} = \frac{4 \sqrt{5}}{9} \]
Answer: \( \sin 2\theta = \frac{4 \sqrt{5}}{9} \)
Part (b)
Show that \( b = \frac{3a}{4} \).
Method 1: Sine Rule
In triangle \( ABC \), apply the sine rule: \( \frac{b}{\sin \theta} = \frac{a}{\sin 2\theta} \).
From (a): \( \sin \theta = \frac{\sqrt{5}}{3} \), \( \sin 2\theta = \frac{4 \sqrt{5}}{9} \).
\[ \frac{b}{\frac{\sqrt{5}}{3}} = \frac{a}{\frac{4 \sqrt{5}}{9}} \]
\[ b = a \cdot \frac{\frac{\sqrt{5}}{3}}{\frac{4 \sqrt{5}}{9}} = a \cdot \frac{\sqrt{5}}{3} \cdot \frac{9}{4 \sqrt{5}} = a \cdot \frac{9}{12} = \frac{3a}{4} \]
Method 2: Double-Angle Identity
Using \( \sin 2\theta = 2 \sin \theta \cos \theta \):
\[ \frac{b}{\sin \theta} = \frac{a}{2 \sin \theta \cos \theta} \implies b = \frac{a \sin \theta}{2 \sin \theta \cos \theta} = \frac{a}{2 \cos \theta} \]
Substitute \( \cos \theta = \frac{2}{3} \):
\[ b = \frac{a}{2 \cdot \frac{2}{3}} = \frac{a}{\frac{4}{3}} = a \cdot \frac{3}{4} = \frac{3a}{4} \]
Answer: \( b = \frac{3a}{4} \)
Part (c)
Find \( \sin \angle CAD \) in isosceles triangle \( DAC \), where \( \angle CAD \) is the angle at \( A \).
From the diagram, \( \angle CAD = 2\theta \).
From (a)(ii), \( \sin 2\theta = \frac{4 \sqrt{5}}{9} \).
Thus, \( \sin \angle CAD = \sin 2\theta \).
Answer: \( \sin \angle CAD = \frac{4 \sqrt{5}}{9} \)
Part (d)
Find the area of triangle \( DAC \) in terms of \( a \).
Method 1: Using \( \angle CAD \)
Area formula: \( \text{Area} = \frac{1}{2} \cdot \text{AD} \cdot \text{AC} \cdot \sin \angle CAD \).
From the diagram, \( \text{AD} = b \), \( \text{AC} = b \), and from (b), \( b = \frac{3a}{4} \).
From (c), \( \sin \angle CAD = \frac{4 \sqrt{5}}{9} \).
\[ \text{Area} = \frac{1}{2} \cdot \frac{3a}{4} \cdot \frac{3a}{4} \cdot \frac{4 \sqrt{5}}{9} \]
\[ = \frac{1}{2} \cdot \frac{9a^2}{16} \cdot \frac{4 \sqrt{5}}{9} = \frac{9a^2 \cdot 4 \sqrt{5}}{2 \cdot 16 \cdot 9} = \frac{36 \sqrt{5} a^2}{288} = \frac{\sqrt{5} a^2}{8} \]
Method 2: Using \( \angle DCA \) or \( \angle CDA \)
In isosceles triangle \( DAC \), \( \angle DCA = \angle CDA = \theta \), and \( \text{CD} = a \), \( \text{AD} = b = \frac{3a}{4} \).
Area: \( \text{Area} = \frac{1}{2} \cdot \text{CD} \cdot \text{AD} \cdot \sin \angle DCA \).
\[ \text{Area} = \frac{1}{2} \cdot a \cdot \frac{3a}{4} \cdot \sin \theta \]
From (a)(i), \( \sin \theta = \frac{\sqrt{5}}{3} \):
\[ \text{Area} = \frac{1}{2} \cdot a \cdot \frac{3a}{4} \cdot \frac{\sqrt{5}}{3} = \frac{1}{2} \cdot \frac{3a^2}{4} \cdot \frac{\sqrt{5}}{3} = \frac{3 \sqrt{5} a^2}{24} = \frac{\sqrt{5} a^2}{8} \]
Answer: Area of triangle \( DAC = \frac{\sqrt{5} a^2}{8} \)