Home / IBDP Maths AA: Topic SL 3.3: Applications of right and non-right angled trigonometry, including Pythagoras’s theorem: IB style Questions HL Paper 2

IBDP Maths AA: Topic SL 3.3: Applications of right and non-right angled trigonometry, including Pythagoras’s theorem: IB style Questions HL Paper 2

Question

ABCD is a quadrilateral where \({\text{AB}} = 6.5,{\text{ BC}} = 9.1,{\text{ CD}} = 10.4,{\text{ DA}} = 7.8\) and \({\rm{C\hat DA}} = 90^\circ \). Find \({\rm{A\hat BC}}\), giving your answer correct to the nearest degree.

▶️Answer/Explanation

Markscheme

\({\text{A}}{{\text{C}}^2} = {7.8^2} + {10.4^2}\)    (M1)

\({\text{AC}} = 13\)    (A1)

use of cosine rule eg, \(\cos ({\rm{A\hat BC}}) = \frac{{{{6.5}^2} + {{9.1}^2} – {{13}^2}}}{{2(6.5)(9.1)}}\)     M1

\({\rm{A\hat BC}} = 111.804 \ldots ^\circ {\text{ }}( = 1.95134 \ldots )\)    (A1)

\( = 112^\circ \)    A1

[5 marks]

Examiners report

Well done by most candidates. A small number of candidates did not express the required angle correct to the nearest degree.

Question

[Maximum mark: 7]
The diagram shows a triangle ABC with AB=9, AC = AD = 5, \( \hat{B}\)= 30°, C  = 45°.

(a) Write down the value of the angle BÂ C. [1]
(b) Find the value of angle B \(\hat{D}\)A and hence the value of angle BÂ D. [2]
(c) Find BC. [2]
(d) Find BD.

▶️Answer/Explanation

Answer:

(a) B \(\hat{A}\) C = 105°
(b) B\(\hat{D}\) A = 135° , B \(\hat{A}\) D = 15°
(c) BC2 = 92 + 52 – 2×9×5×cos105° ⇒ BC = 11.4
BD2 = 92 + 52 – 2×9×5×cos15° ⇒ BD = 4.36

Question

[Maximum mark: 6]
In the triangle ABC, Â = 30°, BC = 3 and AB = 5. Find the two possible values of \(\hat{B}\).

▶️Answer/Explanation

Answer:

\(\sin C=\frac{c\sin A}{a}=\frac{5\times 0.5}{3}\)

\(\hat{C}=56.4^{o}\)  and then \(\hat{B}=93.6^{o}\)    or  \(\hat{C}=123.6^{o}\)   and then \(\hat{B}=26.24^{o}\)

Question

[Maximum mark: 7]
In a triangle ABC, Â = 35°, BC = 4 cm and AC = 6.5 cm. Find the possible values of \(\hat{B}\)    and the corresponding values of AB.

▶️Answer/Explanation

Answer:

Sine rule: \(\frac{\sin 35}{4}=\frac{\sin \hat{B}}{6.5}\Rightarrow \sin \hat{B}=\frac{6.5\sin 35}{4}\Rightarrow \sin \hat{B}=0.932\)

Hence  \(\hat{B}=68.8\)  or  \(\hat{B}=180-68.8 =111.2\)

If  \(\hat{B}=68.8,\)   then \(\hat{C}=180-35-68.8=76.2\)

Sine rule again: \(\frac{\sin 35}{4}=\frac{\sin 76.2}{AB}\Rightarrow AB=6.77\)

If \(\hat{B}=111.2,\)   then \(\hat{C}=180-35-111.2=33.8 \)

Sine rule again: \(\frac{\sin 35}{4}=\frac{\sin 33.8}{AB}\Rightarrow AB=3.88\)

Question

[Maximum mark: 6]
In a triangle ABC, A\(\hat{B}\) C =30°, AB = 6cm , AC =\(3\sqrt{2}cm\). Find the possible lengths of [BC].

▶️Answer/Explanation

Answer:
METHOD 1:

Using the sine rule:  \(\frac{\sin C}{6}=\frac{\sin 30^{o}}{3\sqrt{2}}\Rightarrow \sin C=\frac{1}{\sqrt{2}}\Rightarrow C=45^{o},135^{o}\)

If C = 45° , B = 105°    \(\frac{3\sqrt{2}}{\sin 30^{o}}=\frac{BC}{\sin 15^{o}}\Rightarrow BC=2.20 cm\)

If \(C=135^{o}, B=15^{o}\)  \(\frac{3\sqrt{2}}{\sin 30^{o}}=\frac{BC}{\sin 15^{o}}\Rightarrow BC=2.20 cm\)

Method 2:
Using the cosine rule: \(AC^{2}=6^{2}+BC^{2}-2(6)(BC)\cos 30^{o}\Rightarrow 18=36+BC^{2}-6\sqrt{3}BC\)

(In fact, this is a quadratic equation:  \(BC^{2}-(6\sqrt{3})BC+18=0)\)

BC = 8.20 cm or BC = 2.20 cm.

Scroll to Top