IBDP Maths AHL 3.12 Concept of a vector AA HL Paper 1- Exam Style Questions- New Syllabus
The diagram below shows a circle with centre O. The points A, B, C lie on the circumference of the circle and [AC] is a diameter.

Let \( \overrightarrow{OA} = \boldsymbol{a} \) and \( \overrightarrow{OB} = \boldsymbol{b} \).
a. Write down expressions for \( \overrightarrow{AB} \) and \( \overrightarrow{CB} \) in terms of the vectors \( \boldsymbol{a} \) and \( \boldsymbol{b} \). [2]
b. Hence prove that angle \( ABC \) is a right angle. [3]
▶️ Answer/Explanation
Using vector geometry:
\( \overrightarrow{AB} = \overrightarrow{OB} – \overrightarrow{OA} = \boldsymbol{b} – \boldsymbol{a} \) (A1)
\( \overrightarrow{CB} = \overrightarrow{OB} – \overrightarrow{OC} = \boldsymbol{b} – (-\boldsymbol{a}) = \boldsymbol{b} + \boldsymbol{a} \) (A1)
[2 marks]
To prove angle \( ABC \) is right-angled:
Calculate the dot product:
\( \overrightarrow{AB} \cdot \overrightarrow{CB} = (\boldsymbol{b} – \boldsymbol{a}) \cdot (\boldsymbol{b} + \boldsymbol{a}) \) (M1)
\( = |\boldsymbol{b}|^2 – |\boldsymbol{a}|^2 \) (A1)
Since \( |\boldsymbol{a}| = |\boldsymbol{b}| \) (both are radii of the circle):
\( \overrightarrow{AB} \cdot \overrightarrow{CB} = 0 \) (R1)
Therefore, \( \overrightarrow{AB} \) is perpendicular to \( \overrightarrow{CB} \), proving angle \( ABC \) is a right angle. (AG)
[3 marks]
The points A(1, 2, 1), B(−3, 1, 4), C(5, −1, 2) and D(5, 3, 7) are the vertices of a tetrahedron.
a. Find the vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \). [2]
b. Find the Cartesian equation of the plane \( \prod \) that contains the face ABC. [4]
▶️ Answer/Explanation
Find the vectors:
\( \overrightarrow{AB} = \begin{pmatrix} -3 – 1 \\ 1 – 2 \\ 4 – 1 \end{pmatrix} = \begin{pmatrix} -4 \\ -1 \\ 3 \end{pmatrix} \) (A1)
\( \overrightarrow{AC} = \begin{pmatrix} 5 – 1 \\ -1 – 2 \\ 2 – 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} \) (A1)
[2 marks]
Find the normal vector to the plane:
\( \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ -4 & -1 & 3 \\ 4 & -3 & 1 \end{vmatrix} = \begin{pmatrix} 8 \\ 16 \\ 16 \end{pmatrix} \) (M1A1)
Simplify the normal vector:
\( \boldsymbol{n} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \) (divided by 8)
Find the plane equation using point A(1, 2, 1):
\( 1(x-1) + 2(y-2) + 2(z-1) = 0 \)
Simplify to get the Cartesian equation:
\( x + 2y + 2z = 7 \) (A1)
[4 marks]
In the diagram below, [AB] is a diameter of the circle with center O. Point C is on the circumference of the circle. Let \( \overrightarrow{OB} = \boldsymbol{b} \) and \( \overrightarrow{OC} = \boldsymbol{c} \).

a. Find an expression for \( \overrightarrow{CB} \) and for \( \overrightarrow{AC} \) in terms of \( \boldsymbol{b} \) and \( \boldsymbol{c} \). [2]
b. Hence prove that angle \( ACB \) is a right angle. [3]
▶️ Answer/Explanation
Vector expressions:
\( \overrightarrow{CB} = \overrightarrow{OB} – \overrightarrow{OC} = \boldsymbol{b} – \boldsymbol{c} \) (A1)
\( \overrightarrow{AC} = \overrightarrow{OC} – \overrightarrow{OA} = \boldsymbol{c} – (-\boldsymbol{b}) = \boldsymbol{b} + \boldsymbol{c} \) (A1)
[2 marks]
To prove angle \( ACB \) is right-angled:
Calculate the dot product:
\( \overrightarrow{AC} \cdot \overrightarrow{CB} = (\boldsymbol{b} + \boldsymbol{c}) \cdot (\boldsymbol{b} – \boldsymbol{c}) \) (M1)
Expand using dot product properties:
\( = |\boldsymbol{b}|^2 – |\boldsymbol{c}|^2 \) (A1)
Since \( |\boldsymbol{b}| = |\boldsymbol{c}| \) (both are radii of the circle):
\( \overrightarrow{AC} \cdot \overrightarrow{CB} = 0 \) (R1)
Therefore, \( \overrightarrow{AC} \) is perpendicular to \( \overrightarrow{CB} \), proving angle \( ACB \) is a right angle. (AG)
[3 marks]
The vertices of a triangle ABC have coordinates given by A\((-1, 2, 3)\), B\((4, 1, 1)\) and C\((3, -2, 2)\).
a. (i) Find the lengths of the sides of the triangle.
(ii) Find \(\cos \angle BAC\). [6]
b. (i) Show that \(\overrightarrow{BC} \times \overrightarrow{CA} = -7\mathbf{i} – 3\mathbf{j} – 16\mathbf{k}\).
(ii) Hence, show that the area of the triangle ABC is \(\frac{1}{2}\sqrt{314}\). [5]
c. Find the Cartesian equation of the plane containing the triangle ABC. [3]
d. Find a vector equation of (AB). [2]
The point D on (AB) is such that \(\overrightarrow{OD}\) is perpendicular to \(\overrightarrow{BC}\) where O is the origin.
e. (i) Find the coordinates of D.
(ii) Show that D does not lie between A and B. [5]
▶️ Answer/Explanation
(i) Finding side lengths:
\(\overrightarrow{AB} = \begin{pmatrix} 4-(-1) \\ 1-2 \\ 1-3 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix}\)
\(|\overrightarrow{AB}| = \sqrt{5^2 + (-1)^2 + (-2)^2} = \sqrt{25 + 1 + 4} = \sqrt{30}\)
\(\overrightarrow{BC} = \begin{pmatrix} 3-4 \\ -2-1 \\ 2-1 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix}\)
\(|\overrightarrow{BC}| = \sqrt{(-1)^2 + (-3)^2 + 1^2} = \sqrt{1 + 9 + 1} = \sqrt{11}\)
\(\overrightarrow{CA} = \begin{pmatrix} -1-3 \\ 2-(-2) \\ 3-2 \end{pmatrix} = \begin{pmatrix} -4 \\ 4 \\ 1 \end{pmatrix}\)
\(|\overrightarrow{CA}| = \sqrt{(-4)^2 + 4^2 + 1^2} = \sqrt{16 + 16 + 1} = \sqrt{33}\)
(ii) Finding \(\cos \angle BAC\):
\(\overrightarrow{AB} \cdot \overrightarrow{AC} = 5 \times 4 + (-1) \times (-4) + (-2) \times (-1) = 20 + 4 + 2 = 26\)
\(\cos \angle BAC = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|} = \frac{26}{\sqrt{30} \times \sqrt{33}} = \frac{26}{\sqrt{990}} = \frac{26}{3\sqrt{110}}\)
[6 marks]
(i) Cross product calculation:
\(\overrightarrow{BC} \times \overrightarrow{CA} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -3 & 1 \\ -4 & 4 & 1 \end{vmatrix}\)
\(= \mathbf{i}[(-3)(1)-(1)(4)] – \mathbf{j}[(-1)(1)-(1)(-4)] + \mathbf{k}[(-1)(4)-(-3)(-4)]\)
\(= -7\mathbf{i} – 3\mathbf{j} – 16\mathbf{k}\)
(ii) Area calculation:
Area \(= \frac{1}{2}|\overrightarrow{BC} \times \overrightarrow{CA}| = \frac{1}{2}\sqrt{(-7)^2 + (-3)^2 + (-16)^2} = \frac{1}{2}\sqrt{49 + 9 + 256} = \frac{1}{2}\sqrt{314}\)
[5 marks]
Plane equation:
Using normal vector \(\mathbf{n} = -7\mathbf{i} – 3\mathbf{j} – 16\mathbf{k}\) and point A\((-1, 2, 3)\):
\(-7(x+1) – 3(y-2) – 16(z-3) = 0\)
Simplified: \(7x + 3y + 16z = 47\)
[3 marks]
Vector equation of AB:
\(\mathbf{r} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} + t\begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix}\) or
\(\mathbf{r} = (-\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) + t(5\mathbf{i} – \mathbf{j} – 2\mathbf{k})\)
[2 marks]
(i) Coordinates of D:
Parametric form: \(D(-1 + 5t, 2 – t, 3 – 2t)\)
Condition: \(\overrightarrow{OD} \cdot \overrightarrow{BC} = 0\)
\((-1+5t)(-1) + (2-t)(-3) + (3-2t)(1) = 0\)
Solution: \(t = -\frac{1}{2}\)
Coordinates: \(D\left(-\frac{7}{2}, \frac{5}{2}, 4\right)\)
(ii) Position of D:
Since \(t = -0.5 \notin [0,1]\), D is not between A and B
[5 marks]
- Vector magnitudes: \(|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}\)
- Dot product: \(\mathbf{a} \cdot \mathbf{b} = a_xb_x + a_yb_y + a_zb_z\)
- Cross product: \(\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}\)
- Plane equation: \(n_x(x-x_0) + n_y(y-y_0) + n_z(z-z_0) = 0\)