IBDP Maths AHL 3.13 Scalar product of two vectors AA HL Paper 1- Exam Style Questions- New Syllabus
Two lines, \(L_1\) and \(L_2\), intersect at point P. Point A\((2t, 8, 3)\), where \(t > 0\), lies on \(L_2\). This is shown in the following diagram.

The acute angle between the two lines is \(\frac{\pi}{3}\).
The direction vector of \(L_1\) is \(\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}\) and \(\overrightarrow{PA} = \begin{pmatrix}2t \\ 0 \\ 3+t\end{pmatrix}\)
(a) Show that \(4t = \sqrt{10t^2+12t+18}\)
(b) Find the value of \(t\).
(c) Hence or otherwise, find the shortest distance from A to \(L_1\).
A plane \(\Pi\) contains \(L_1\) and \(L_2\)
(d) Find a normal vector to \(\Pi\).
The base of a right cone lies in \(\Pi\) centered at A such that \(L_1\) is a tangent to its base. The volume of the cone is \(90\pi\sqrt{3}\) cubic units.
(e) Find the two possible positions of the vertex of the cone.
▶️ Answer/Explanation
Using the dot product formula:
\(\overrightarrow{PA} \cdot \overrightarrow{L_1} = |\overrightarrow{PA}||\overrightarrow{L_1}|\cos\left(\frac{\pi}{3}\right)\)
Calculate dot product:
\(\begin{pmatrix}2t \\ 0 \\ 3+t\end{pmatrix} \cdot \begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix} = 2t\)
Calculate magnitudes:
\(|\overrightarrow{PA}| = \sqrt{(2t)^2 + 0^2 + (3+t)^2} = \sqrt{5t^2 + 6t + 9}\)
\(|\overrightarrow{L_1}| = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{2}\)
Substitute into formula:
\(2t = \sqrt{5t^2 + 6t + 9} \times \sqrt{2} \times \frac{1}{2}\)
Simplify to show:
\(4t = \sqrt{10t^2 + 12t + 18}\) [4 marks]
Square both sides:
\(16t^2 = 10t^2 + 12t + 18\)
Simplify:
\(6t^2 – 12t – 18 = 0\)
Divide by 6:
\(t^2 – 2t – 3 = 0\)
Factorize:
\((t – 3)(t + 1) = 0\)
Since \(t > 0\), the solution is:
\(t = 3\) [3 marks]
Shortest distance formula:
\(d = \frac{|\overrightarrow{PA} \times \overrightarrow{L_1}|}{|\overrightarrow{L_1}|}\)
Calculate cross product:
\(\overrightarrow{PA} \times \overrightarrow{L_1} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 0 \\ 1 & 1 & 0 \end{vmatrix} = -6\mathbf{i} + 6\mathbf{j} + 6\mathbf{k}\)
Magnitude:
\(\sqrt{(-6)^2 + 6^2 + 6^2} = \sqrt{108} = 6\sqrt{3}\)
Divide by \(|\overrightarrow{L_1}| = \sqrt{2}\):
\(d = \frac{6\sqrt{3}}{\sqrt{2}} = 3\sqrt{6}\) [4 marks]
Normal vector is cross product of direction vectors:
\(\overrightarrow{L_1} = \begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}\)
\(\overrightarrow{L_2} = \overrightarrow{PA} = \begin{pmatrix}6 \\ 0 \\ 6\end{pmatrix}\)
Cross product:
\(\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 6 & 0 & 6 \end{vmatrix} = 6\mathbf{i} – 6\mathbf{j} – 6\mathbf{k}\)
Simplified normal vector:
\(\begin{pmatrix}1 \\ -1 \\ -1\end{pmatrix}\)
[3 marks]
Cone volume formula:
\(V = \frac{1}{3}\pi r^2 h = 90\pi\sqrt{3}\)
From part (c), radius \(r = 3\sqrt{6}\)
Solve for height \(h\):
\(\frac{1}{3}\pi (54) h = 90\pi\sqrt{3} \Rightarrow h = 5\sqrt{3}\)
Vertex positions:
1. \(\begin{pmatrix}6 \\ 8 \\ 3\end{pmatrix} + 5\sqrt{3} \times \frac{1}{\sqrt{3}}\begin{pmatrix}1 \\ -1 \\ -1\end{pmatrix} = \begin{pmatrix}11 \\ 3 \\ -2\end{pmatrix}\)
2. \(\begin{pmatrix}6 \\ 8 \\ 3\end{pmatrix} – 5\sqrt{3} \times \frac{1}{\sqrt{3}}\begin{pmatrix}1 \\ -1 \\ -1\end{pmatrix} = \begin{pmatrix}1 \\ 13 \\ 8\end{pmatrix}\)
[6 marks]
- Vector operations: dot product and cross product
- Distance from point to line in 3D space
- Plane geometry and normal vectors
- Cone volume and geometric properties
Consider the vectors \(\mathbf{a} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}\), \(\mathbf{b} = -3\mathbf{j} + 4\mathbf{k}\).
a. (i) Find the cosine of the angle between vectors \(\mathbf{a}\) and \(\mathbf{b}\).
(ii) Find \(\mathbf{a} \times \mathbf{b}\).
(iii) Hence find the Cartesian equation of the plane \(\Pi\) containing the vectors \(\mathbf{a}\) and \(\mathbf{b}\) and passing through the point \((1, 1, -1)\).
(iv) The plane \(\Pi\) intersects the \(x\)-\(y\) plane in the line \(l\). Find the area of the finite triangular region enclosed by \(l\), the \(x\)-axis and the \(y\)-axis. [11]
b. Given two vectors \(\mathbf{p}\) and \(\mathbf{q}\):
(i) Show that \(\mathbf{p} \cdot \mathbf{p} = |\mathbf{p}|^2\);
(ii) Hence, or otherwise, show that \(|\mathbf{p} + \mathbf{q}|^2 = |\mathbf{p}|^2 + 2\mathbf{p} \cdot \mathbf{q} + |\mathbf{q}|^2\);
(iii) Deduce that \(|\mathbf{p} + \mathbf{q}| \leq |\mathbf{p}| + |\mathbf{q}|\). [8]
▶️ Answer/Explanation
(i) Cosine of angle:
Using dot product formula:
\(\mathbf{a} \cdot \mathbf{b} = (6)(0) + (3)(-3) + (2)(4) = -9 + 8 = -1\)
Magnitudes:
\(|\mathbf{a}| = \sqrt{6^2 + 3^2 + 2^2} = 7\)
\(|\mathbf{b}| = \sqrt{0^2 + (-3)^2 + 4^2} = 5\)
Therefore:
\(\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \frac{-1}{35}\)
(ii) Cross product:
\(\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 3 & 2 \\ 0 & -3 & 4 \end{vmatrix}\)
\(= \mathbf{i}(3 \times 4 – 2 \times -3) – \mathbf{j}(6 \times 4 – 2 \times 0) + \mathbf{k}(6 \times -3 – 3 \times 0)\)
\(= 18\mathbf{i} – 24\mathbf{j} – 18\mathbf{k}\)
(iii) Plane equation:
Using normal vector \(\mathbf{n} = 18\mathbf{i} – 24\mathbf{j} – 18\mathbf{k}\) and point \((1,1,-1)\):
\(18(x-1) – 24(y-1) – 18(z+1) = 0\)
Simplify:
\(18x – 24y – 18z = 12\) or \(3x – 4y – 3z = 2\)
(iv) Triangular area:
When \(z = 0\) (x-y plane):
\(3x – 4y = 2\)
x-intercept: \(x = \frac{2}{3}\)
y-intercept: \(y = -\frac{1}{2}\)
Area of triangle:
\(\frac{1}{2} \times \frac{2}{3} \times \frac{1}{2} = \frac{1}{6}\)
[11 marks]
(i) Dot product identity:
\(\mathbf{p} \cdot \mathbf{p} = |\mathbf{p}||\mathbf{p}|\cos 0 = |\mathbf{p}|^2\)
(ii) Magnitude expansion:
\(|\mathbf{p} + \mathbf{q}|^2 = (\mathbf{p} + \mathbf{q}) \cdot (\mathbf{p} + \mathbf{q})\)
\(= \mathbf{p} \cdot \mathbf{p} + 2\mathbf{p} \cdot \mathbf{q} + \mathbf{q} \cdot \mathbf{q}\)
\(= |\mathbf{p}|^2 + 2\mathbf{p} \cdot \mathbf{q} + |\mathbf{q}|^2\)
(iii) Triangle inequality:
From part (ii):
\(|\mathbf{p} + \mathbf{q}|^2 = |\mathbf{p}|^2 + 2\mathbf{p} \cdot \mathbf{q} + |\mathbf{q}|^2\)
Using \(\mathbf{p} \cdot \mathbf{q} \leq |\mathbf{p}||\mathbf{q}|\) (Cauchy-Schwarz):
\(\leq |\mathbf{p}|^2 + 2|\mathbf{p}||\mathbf{q}| + |\mathbf{q}|^2\)
Take square roots:
\(|\mathbf{p} + \mathbf{q}| \leq |\mathbf{p}| + |\mathbf{q}|\)

[8 marks]
- Vector operations: dot product and cross product
- Plane equations using normal vectors
- Geometric interpretation of vector relationships
- Triangle inequality for vectors