Home / IBDP Maths AHL 3.14 Vector equation of a line in planes AA SL Paper 1- Exam Style Questions

IBDP Maths AHL 3.14 Vector equation of a line in planes AA SL Paper 1- Exam Style Questions

IBDP Maths AHL 3.14 Vector equation of a line in planes AA SL Paper 1- Exam Style Questions- New Syllabus

Question

Points A and B have coordinates (1, 1, 2) and (9, m, -6) respectively.

(a) Express \(\overrightarrow{AB}\) in terms of \(m\). [2]

The line \(L\), which passes through B, has equation:

\(\mathbf{r} = \begin{pmatrix} -3 \\ -19 \\ 24 \end{pmatrix} + s\begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix}\)

(b) Find the value of \(m\). [5]

Consider a unit vector \(\mathbf{u}\), such that \(\mathbf{u} = p\mathbf{i} – \frac{2}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}\), where \(p > 0\).

Point C is such that \(\overrightarrow{BC} = 9\mathbf{u}\).

(c) Find the coordinates of C. [8]

▶️ Answer/Explanation
Solution (a)

To find \(\overrightarrow{AB}\):

\(\overrightarrow{AB} = \overrightarrow{OB} – \overrightarrow{OA} = \begin{pmatrix} 9 \\ m \\ -6 \end{pmatrix} – \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ m-1 \\ -8 \end{pmatrix}\)

[2 marks]

Solution (b)

Since point B lies on line L, we can substitute its coordinates into the line equation:

\(\begin{pmatrix} 9 \\ m \\ -6 \end{pmatrix} = \begin{pmatrix} -3 \\ -19 \\ 24 \end{pmatrix} + s\begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix}\)

This gives us three equations:

1. \(9 = -3 + 2s \Rightarrow s = 6\)

2. \(m = -19 + 4s\)

3. \(-6 = 24 – 5s \Rightarrow s = 6\) (consistent)

Substituting \(s = 6\) into the second equation:

\(m = -19 + 4(6) = -19 + 24 = 5\)

[5 marks]

Solution (c)

First, find the value of \(p\) for the unit vector \(\mathbf{u}\):

For a unit vector: \(|\mathbf{u}| = 1\)

\(\sqrt{p^2 + \left(-\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2} = 1\)

\(\sqrt{p^2 + \frac{4}{9} + \frac{1}{9}} = 1\)

\(p^2 + \frac{5}{9} = 1\)

\(p^2 = \frac{4}{9}\)

Since \(p > 0\), \(p = \frac{2}{3}\)

Now, the unit vector is:

\(\mathbf{u} = \frac{2}{3}\mathbf{i} – \frac{2}{3}\mathbf{j} + \frac{1}{3}\mathbf{k} = \begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix}\)

Find \(\overrightarrow{BC}\):

\(\overrightarrow{BC} = 9\mathbf{u} = 9\begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 6 \\ -6 \\ 3 \end{pmatrix}\)

Find coordinates of C:

\(\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} = \begin{pmatrix} 9 \\ 5 \\ -6 \end{pmatrix} + \begin{pmatrix} 6 \\ -6 \\ 3 \end{pmatrix} = \begin{pmatrix} 15 \\ -1 \\ -3 \end{pmatrix}\)

Therefore, the coordinates of C are (15, -1, -3).

[8 marks]

✅ Key Concepts:
  1. Vector subtraction to find displacement vectors
  2. Substituting points into line equations
  3. Properties of unit vectors
  4. Vector addition to find point coordinates
Question

Consider the line \(L_1\) defined by the Cartesian equation \(\frac{x+1}{2} = y = 3 – z\).

(a)

(i) Show that the point \((-1, 0, 3)\) lies on \(L_1\).

(ii) Find a vector equation of \(L_1\). \([4]\)

Consider a second line \(L_2\) defined by the vector equation:

\(\mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t\begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix}\), where \(t \in \mathbb{R}\) and \(a \in \mathbb{R}\).

(b) Find the possible values of \(a\) when the acute angle between \(L_1\) and \(L_2\) is \(45^\circ\). \([8]\)

It is given that the lines \(L_1\) and \(L_2\) have a unique point of intersection, \(A\), when \(a \neq k\).

(c) Find the value of \(k\), and find the coordinates of the point \(A\) in terms of \(a\). \([7]\)

▶️ Answer/Explanation
Solution (a)(i)

Substitute \((-1, 0, 3)\) into the Cartesian equation:

\(\frac{-1+1}{2} = 0 = 3 – 3\)

\(0 = 0 = 0\) ✓

The point satisfies all three equations, so it lies on \(L_1\).

Solution (a)(ii)

From the Cartesian equation \(\frac{x+1}{2} = y = 3 – z = \lambda\):

Let \(\frac{x+1}{2} = y = 3 – z = \lambda\)

Then:

\(x = 2\lambda – 1\)

\(y = \lambda\)

\(z = 3 – \lambda\)

Vector equation:

\(\mathbf{r} = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} + \lambda\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}\)

[4 marks]

Solution (b)

Using scalar product formula:

\(\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix} = \sqrt{6} \cdot \sqrt{a^2+2} \cdot \cos 45^\circ\)

\(2a + 2 = \sqrt{6(a^2+2)} \cdot \frac{\sqrt{2}}{2}\)

Simplify:

\(2a + 2 = \sqrt{3(a^2+2)}\)

Square both sides:

\(4a^2 + 8a + 4 = 3a^2 + 6\)

Simplify:

\(a^2 + 8a – 2 = 0\)

Solve using quadratic formula:

\(a = \frac{-8 \pm \sqrt{72}}{2} = -4 \pm 3\sqrt{2}\)

Verified solution: \(a = -4 + 3\sqrt{2}\) or \(a = -4 – 3\sqrt{2}\)

[8 marks]

Solution (c)

Equate parametric forms:

\(\begin{cases} 2\lambda – 1 = ta \\ \lambda = 1 + t \\ 3 – \lambda = 2 – t \end{cases}\)

Solve the system:

From second equation: \(t = \lambda – 1\)

Substitute into first equation:

\(2\lambda – 1 = (\lambda – 1)a\)

\(\Rightarrow \lambda(a – 2) = a – 1\)

\(\Rightarrow \lambda = \frac{a-1}{a-2}\)

Unique solution exists when \(a \neq 2\), so \(k = 2\)

Coordinates of A:

\(\left( \frac{a}{a-2}, \frac{a-1}{a-2}, \frac{2a-5}{a-2} \right)\)

Verified solution: \(k = 2\) and \(A\left(\frac{a}{a-2}, \frac{a-1}{a-2}, \frac{2a-5}{a-2}\right)\)

[7 marks]

✅ Key Concepts:
  1. Converting between Cartesian and vector equations of lines
  2. Calculating angles between lines using direction vectors
  3. Conditions for intersecting and parallel lines
  4. Solving systems of equations to find intersection points
Scroll to Top