IBDP Maths AHL 3.14 Vector equation of a line in planes AA SL Paper 2- Exam Style Questions- New Syllabus
Line \( L \) is given by the vector equation \( \mathbf{r}_1 = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \), where \( s \in \mathbb{R} \).
Line \( M \) is given by the vector equation \( \mathbf{r}_2 = \begin{pmatrix} 9 \\ 9 \\ 11 \end{pmatrix} + t \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \), where \( t \in \mathbb{R} \).
a. Show that lines \( L \) and \( M \) intersect at a point \( A \) and find the position vector of \( A \). [5]
b. Verify that the lines \( L \) and \( M \) both lie in the plane \( \Pi \) given by \( \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 7 \). [3]
c.
(i) Find the position vector of \( C \), where a line through \( B(-3, 12, 2) \) perpendicular to \( \Pi \) intersects \( \Pi \) at point \( C \). [4]
(ii) Hence, find \( |\overrightarrow{BC}| \). [3]
d. Find the reflection of the point \( B \) in the plane \( \Pi \). [3]
▶️ Answer/Explanation
a. [5 marks]
Set \(\mathbf{r}_1 = \mathbf{r}_2\): \(\begin{pmatrix} 1 + 2s \\ 2 + 3s \\ -3 + 6s \end{pmatrix} = \begin{pmatrix} 9 + 4t \\ 9 + t \\ 11 + 2t \end{pmatrix}\) (M1).
Equate components:
\(1 + 2s = 9 + 4t\) (A1) (1)
\(2 + 3s = 9 + t\) (A1) (2)
\(-3 + 6s = 11 + 2t\) (A1) (3)
From (2): \(t = 3s – 7\).
Substitute into (1): \(1 + 2s = 9 + 4(3s – 7) = 12s – 19 \Rightarrow -10s = -20 \Rightarrow s = 2\) (M1).
Then: \(t = 3(2) – 7 = -1\).
Verify with (3): \(-3 + 6(2) = 11 + 2(-1) = 9\), satisfied (A1).
Position vector of \(A\): \(\begin{pmatrix} 1 + 2(2) \\ 2 + 3(2) \\ -3 + 6(2) \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \\ 9 \end{pmatrix}\) (A1).
b. [3 marks]
For \(L\): \(\begin{pmatrix} 1 + 2s \\ 2 + 3s \\ -3 + 6s \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 2(2 + 3s) – 1(-3 + 6s) = 4 + 6s + 3 – 6s = 7\) (M1A1).
For \(M\): \(\begin{pmatrix} 9 + 4t \\ 9 + t \\ 11 + 2t \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 2(9 + t) – 1(11 + 2t) = 18 + 2t – 11 – 2t = 7\) (A1).
Both lines satisfy the plane equation, so they lie in \(\Pi\).
c(i). [4 marks]
Line through \(B(-3, 12, 2)\) perpendicular to \(\Pi\) has direction vector \(\begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}\) (A1).
Parametric equation: \(\mathbf{r} = \begin{pmatrix} -3 \\ 12 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}\) (M1).
Substitute into \(\mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 7\):
\(\begin{pmatrix} -3 \\ 12 + 2\lambda \\ 2 – \lambda \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 2(12 + 2\lambda) – (2 – \lambda) = 24 + 4\lambda – 2 + \lambda = 22 + 5\lambda = 7 \Rightarrow 5\lambda = -15 \Rightarrow \lambda = -3\) (A1).
Position vector of \(C\): \(\begin{pmatrix} -3 \\ 12 + 2(-3) \\ 2 – (-3) \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \\ 5 \end{pmatrix}\) (A1).
c(ii). [3 marks]
\(\overrightarrow{BC} = \begin{pmatrix} -3 – (-3) \\ 6 – 12 \\ 5 – 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \\ 3 \end{pmatrix}\) (M1).
\(|\overrightarrow{BC}| = \sqrt{0^2 + (-6)^2 + 3^2} = \sqrt{45} = 3\sqrt{5} \approx 6.71\) (A1A1).
d. [3 marks]
Reflection \(B’\) has \(C\) as the midpoint of \(B\) and \(B’\).
\(\mathbf{r}_{B’} = \mathbf{r}_C + (\mathbf{r}_C – \mathbf{r}_B)\) (M1).
\(\mathbf{r}_C – \mathbf{r}_B = \begin{pmatrix} -3 – (-3) \\ 6 – 12 \\ 5 – 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \\ 3 \end{pmatrix}\) (A1).
\(\mathbf{r}_{B’} = \begin{pmatrix} -3 \\ 6 \\ 5 \end{pmatrix} + \begin{pmatrix} 0 \\ -6 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \\ 8 \end{pmatrix}\) (A1).
Markscheme Answers:
(a) Lines intersect at \( A \) with position vector \(\begin{pmatrix} 5 \\ 8 \\ 9 \end{pmatrix}\) (M1A1A1A1A1)
(b) Both lines lie in the plane \(\Pi\) (M1A1A1)
(c)(i) Position vector of \( C \): \(\begin{pmatrix} -3 \\ 6 \\ 5 \end{pmatrix}\) (A1M1A1A1)
(c)(ii) \( |\overrightarrow{BC}| = 3\sqrt{5} \approx 6.71 \) (M1A1A1)
(d) Reflection of \( B \): \(\begin{pmatrix} -3 \\ 0 \\ 8 \end{pmatrix}\) (M1A1A1)