Home / IBDP Maths analysis and approaches Topic: AHL 3.15- Coincident, parallel, intersecting and skew lines HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 3.15- Coincident, parallel, intersecting and skew lines HL Paper 1

Question

The lines l1 and l2 have the following vector equations where λ , μ ∈ \(\mathbb{R}\)

(a) Show that l1 and l2 do not intersect. [3]

(b) Find the minimum distance between l1 and l2 . [5]

▶️Answer/Explanation

Ans:

(a) We first observe that $l_1$ and $l_2$ are parallel since $\textbf{d}_1=\left(\begin{matrix}2 \\ -2 \\ 2\end{matrix}\right)=2\left(\begin{matrix}1 \\ -1 \\ 1\end{matrix}\right)=\textbf{d}_2$.
Also, since there is no value of $\lambda$ that satisfies $\left(\begin{matrix}2 \\ 0 \\ 4\end{matrix}\right)=\left(\begin{matrix}3 \\ 2 \\ -12\end{matrix}\right)+\lambda \left(\begin{matrix}2 \\ -2 \\ 2\end{matrix}\right)$, the two lines are distinct and parallel.
(b)
$$\begin{eqnarray}
\text{dist. between }l_1\text{ and }l_2 &=& \frac{\left|\left[\left(\begin{matrix}3 \\ 2 \\ -1\end{matrix}\right)-\left(\begin{matrix}2 \\ 0 \\ 4\end{matrix}\right)\right]\times\left(\begin{matrix}1 \\ -1 \\ 1\end{matrix}\right)\right|}{\left|\left(\begin{matrix}1 \\ -1 \\ 1\end{matrix}\right)\right|} \nonumber \\
= \frac{\left|\left(\begin{matrix}1 \\ 2 \\ -5\end{matrix}\right)\times\left(\begin{matrix}1 \\ -1 \\ 1\end{matrix}\right)\right|}{\sqrt{3}} \nonumber \\
= \frac{1}{\sqrt{3}}\left|\left(\begin{matrix}-3 \\ -6 \\ -3\end{matrix}\right)\right| \nonumber \\
= \frac{3}{\sqrt{3}} \left|\left(\begin{matrix}1 \\ 2 \\ 1\end{matrix}\right)\right| \nonumber \\
= 3\sqrt{2}.
\end{eqnarray}$$

Question

Two boats, A and B , move so that at time t hours, their position vectors, in kilometres, are r\(_A\) = (9t)i + (3 – 6t)j and r\(_B\) = (7 – 4t)i + (7t – 6)j .

a.Find the coordinates of the common point of the paths of the two boats.[4]

 

b.Show that the boats do not collide.[2]

 
▶️Answer/Explanation

Markscheme

METHOD 1

\(9{t_A} = 7 – 4{t_B}\) and

\(3 – 6{t_A} = – 6 + 7{t_B}\)     M1A1

solve simultaneously

\({t_A} = \frac{1}{3},{\text{ }}{t_B} = 1\)     A1 

Note: Only need to see one time for the A1.

therefore meet at (3, 1)     A1

[4 marks]

METHOD 2

path of A is a straight line: \(y = – \frac{2}{3}x + 3\)     M1A1 

Note: Award M1 for an attempt at simultaneous equations.

path of B is a straight line: \(y = – \frac{7}{4}x + \frac{{25}}{4}\)     A1

\( – \frac{2}{3}x + 3 = – \frac{7}{4}x + \frac{{25}}{4}{\text{ }}( \Rightarrow x = 3)\)

so the common point is (3, 1)     A1

[4 marks]

a.

METHOD 1

boats do not collide because the two times \(\left( {{t_A} = \frac{1}{3},{\text{ }}{t_B} = 1} \right)\)     (A1)

are different     R1

[2 marks]

METHOD 2

for boat A, \(9t = 3 \Rightarrow t = \frac{1}{3}\) and for boat B, \(7 – 4t = 3 \Rightarrow t = 1\)

times are different so boats do not collide     R1AG

[2 marks]

b.

Question

Consider the plane \({\mathit{\Pi} _1}\), parallel to both lines \({L_1}\) and \({L_2}\). Point C lies in the plane \({\mathit{\Pi} _1}\).

The line \({L_3}\) has vector equation \(\boldsymbol{r} = \left( \begin{array}{l}3\\0\\1\end{array} \right) + \lambda \left( \begin{array}{c}k\\1\\ – 1\end{array} \right)\).

The plane \({\mathit{\Pi} _2}\) has Cartesian equation \(x + y = 12\).

The angle between the line \({L_3}\) and the plane \({\mathit{\Pi} _2}\) is 60°.

Given the points A(1, 0, 4), B(2, 3, −1) and C(0, 1, − 2) , find the vector equation of the line \({L_1}\) passing through the points A and B.[2]

a.

The line \({L_2}\) has Cartesian equation \(\frac{{x – 1}}{3} = \frac{{y + 2}}{1} = \frac{{z – 1}}{{ – 2}}\).

Show that \({L_1}\) and \({L_2}\) are skew lines.[5]

b.

Find the Cartesian equation of the plane \({\Pi _1}\).[4]

c.

(i)     Find the value of \(k\).

(ii)     Find the point of intersection P of the line \({L_3}\) and the plane \({\mathit{\Pi} _2}\).[7]

d.
▶️Answer/Explanation

Markscheme

direction vector \(\overrightarrow {{\rm{AB}}}  = \left( \begin{array}{c}1\\3\\ – 5\end{array} \right)\) or \(\overrightarrow {{\rm{BA}}}  = \left( \begin{array}{c} – 1\\ – 3\\5\end{array} \right)\)     A1

\(\boldsymbol{r} = \left( \begin{array}{l}1\\0\\4\end{array} \right) + t\left( \begin{array}{c}1\\3\\ – 5\end{array} \right)\) or \(\boldsymbol{r} = \left( \begin{array}{c}2\\3\\ – 1\end{array} \right) + t\left( \begin{array}{c}1\\3\\ – 5\end{array} \right)\) or equivalent     A1

Note:     Do not award final A1 unless ‘\(\boldsymbol{r} = {\text{K}}\)’ (or equivalent) seen.

     Allow FT on direction vector for final A1.

[2 marks]

a.

both lines expressed in parametric form:

\({L_1}\):

\(x = 1 + t\)

\(y = 3t\)

\(z = 4 – 5t\)

\({L_2}\):

\(x = 1 + 3s\)

\(y =  – 2 + s\)     M1A1

\(z =  – 2s + 1\)

Notes:     Award M1 for an attempt to convert \({L_2}\) from Cartesian to parametric form.

     Award A1 for correct parametric equations for \({L_1}\) and \({L_2}\).

     Allow M1A1 at this stage if same parameter is used in both lines.

attempt to solve simultaneously for x and y:     M1

\(1 + t = 1 + 3s\)

\(3t =  – 2 + s\)

\(t =  – \frac{3}{4},{\text{ }}s =  – \frac{1}{4}\)     A1

substituting both values back into z values respectively gives \(z = \frac{{31}}{4}\)

and \(z = \frac{3}{2}\) so a contradiction     R1

therefore \({L_1}\) and \({L_1}\) are skew lines     AG

[5 marks]

b.

finding the cross product:

\(\left( \begin{array}{c}1\\3\\ – 5\end{array} \right) \times \left( \begin{array}{c}3\\1\\ – 2\end{array} \right)\)     (M1)

= – i  – 13j  – 8k     A1

Note:     Accept i  + 13j  + 8k

\( – 1(0) – 13(1) – 8( – 2) = 3\)     (M1)

\( \Rightarrow  – x – 13y – 8z = 3\) or equivalent     A1

[4 marks]

c.

(i)     \((\cos \theta  = )\frac{{\left( \begin{array}{c}k\\1\\ – 1\end{array} \right) \bullet \left( \begin{array}{l}1\\1\\0\end{array} \right)}}{{\sqrt {{k^2} + 1 + 1}  \times \sqrt {1 + 1} }}\)     M1

Note:     Award M1 for an attempt to use angle between two vectors formula.

\(\frac{{\sqrt 3 }}{2} = \frac{{k + 1}}{{\sqrt {2({k^2} + 2)} }}\)     A1

obtaining the quadratic equation

\(4{(k + 1)^2} = 6({k^2} + 2)\)     M1

\({k^2} – 4k + 4 = 0\)

\({(k – 2)^2} = 0\)

\(k = 2\)     A1

Note:     Award M1A0M1A0 if \(\cos 60^\circ \) is used \((k = 0{\text{ or }}k =  – 4)\).

(ii)     \(r = \left( \begin{array}{l}3\\0\\1\end{array} \right) + \lambda \left( \begin{array}{c}2\\1\\ – 1\end{array} \right)\)

substituting into the equation of the plane \({\Pi _2}\):

\(3 + 2\lambda  + \lambda  = 12\)     M1

\(\lambda  = 3\)     A1

point P has the coordinates:

(9, 3, –2)   A1

Notes:     Accept 9i  + 3j  – 2k and \(\left( \begin{array}{l}9\\3\\- 2\end{array} \right)\).

     Do not allow FT if two values found for k.

[7 marks]

d.

Question

Please revisit the exercises on paragraph HL 1.6 SIMULTANEOUS EQUATIONS. Complete the table below. In case of infinitely many solutions write down the vector equation of the line of intersection

HL 1.6

Exercise

Geometric relationship of the three planes

(vector equation of the line of intersection if applicable)

1The intersection point of the three planes is \((1,-1,2)\)
2 
3 
4The three planes intersect in the straight line:
5 
6 
7 
8 
9If \(k \neq 3, \frac{1}{3}\):
If \(k=\frac{1}{3}\):
If \(k=3\):
10 
▶️Answer/Explanation

Ans:

HL 1.6

Exercise

Geometric relationship of the three planes

(vector equation of the line of intersection if applicable)

1The intersection point of the three planes is (1,-1,2)
2The intersection point of the three planes is (-1,2,3)
3The intersection point of the three planes is (1.2, 0.6, 1.6)
4The three planes intersect in the straight line: \(r=\begin{pmatrix} \frac{-1}{12}\\ \frac{-1}{6}\\ 0\end{pmatrix}+\lambda \begin{pmatrix} \frac{-1}{6}\\ \frac{2}{3}\\ 1\end{pmatrix}\)
5The three planes intersect in the straight line: \(r= \begin{pmatrix} 4\\ 1\\ 0\end{pmatrix}+\lambda \begin{pmatrix} 3\\ 2\\ 1\end{pmatrix}\)
6Two planes meet in a line and the third plane is parallel to that line. (in other words the three planes form a prism)
7The three planes intersect in the line: \(r= \begin{pmatrix} 3\\ -1\\ 0\end{pmatrix}+\lambda \begin{pmatrix} 3\\ -3\\ 1\end{pmatrix}\)
8The three planes intersect in the line: \(r=\begin{pmatrix} \frac{11}{3}\\ \frac{-4}{3}\\ 0\end{pmatrix}+\lambda \begin{pmatrix} \frac{-7}{3}\\ \frac{2}{3}\\ 1\end{pmatrix}\)
9If \(k \neq 3, \frac{1}{3}\): the three planes intersect in a unique point
If \(k=\frac{1}{3}\): the three planes do not intersect (they form a prism)
If \(k=3\): the three planes intersect in the line \(r= \begin{pmatrix} -6\\ 3\\ 0\end{pmatrix}+\lambda \begin{pmatrix} -7\\ 2\\ 1\end{pmatrix}\)
10

When \(a = –1\), the three planes intersect in a unique point.

When \(a \neq –1\), the three planes do not intersect in any point (in fact, the two planes intersect in a line and the third plane is parallel to that line, i.e. they form a prism)

Scroll to Top