Home / IB DP Math AA: Topic : AHL 3.17 : Vector equation of a plane HL Paper 2

IB DP Math AA: Topic : AHL 3.17 : Vector equation of a plane HL Paper 2

Question

A plane \(\pi \) has vector equation r = (−2i + 3j − 2k) + \(\lambda \)(2i + 3j + 2k) + \(\mu \)(6i − 3j + 2k).

(a)     Show that the Cartesian equation of the plane \(\pi \) is 3x + 2y − 6z = 12.

(b)     The plane \(\pi \) meets the x, y and z axes at A, B and C respectively. Find the coordinates of A, B and C.

(c)     Find the volume of the pyramid OABC.

(d)     Find the angle between the plane \(\pi \) and the x-axis.

(e)     Hence, or otherwise, find the distance from the origin to the plane \(\pi \).

(f)     Using your answers from (c) and (e), find the area of the triangle ABC.

▶️Answer/Explanation

Markscheme

(a)     EITHER

normal to plane given by

\(\left| {\begin{array}{*{20}{c}}
  i&j&k \\
  2&3&2 \\
  6&{ – 3}&2
\end{array}} \right|\)     M1A1

= 12i + 8j – 24k     A1

equation of \(\pi \) is \(3x + 2y – 6z = d\)     (M1)

as goes through (–2, 3, –2) so d = 12     M1A1

\(\pi :3x + 2y – 6z = 12\)     AG

OR

\(x = – 2 + 2\lambda + 6\mu \)

\(y = 3 + 3\lambda – 3\mu \)

\(z = – 2 + 2\lambda + 2\mu \)

eliminating \(\mu \)

\(x + 2y = 4 + 8\lambda \)

\(2y + 3z = 12\lambda \)     M1A1A1

eliminating \(\lambda \)

\(3(x + 2y) – 2(2y + 3z) = 12\)     M1A1A1

\(\pi :3x + 2y – 6z = 12\)     AG

[6 marks]

 

(b)     therefore A(4, 0, 0), B(0, 6, 0) and C(0, 0, 2)     A1A1A1

Note: Award A1A1A0 if position vectors given instead of coordinates.

 

[3 marks]

 

(c)     area of base \({\text{OAB}} = \frac{1}{2} \times 4 \times 6 = 12\)     M1

\(V = \frac{1}{3} \times 12 \times 2 = 8\)     M1A1

[3 marks]

 

(d)     \(\left( {\begin{array}{*{20}{c}}
  3 \\
  2 \\
  { – 6}
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
  1 \\
  0 \\
  0
\end{array}} \right) = 3 = 7 \times 1 \times \cos \phi \)     M1A1

\(\phi = \arccos \frac{3}{7}\)

so \(\theta = 90 – \arccos \frac{3}{7} = 25.4^\circ \,\,\,\,\,\)(accept 0.443 radians)     M1A1

[4 marks]

 

(e)     \(d = 4\sin \theta = \frac{{12}}{7}\,\,\,\,\,( = 1.71)\)     (M1)A1

[2 marks]

 

(f)     \(8 = \frac{1}{3} \times \frac{{12}}{7} \times {\text{area}} \Rightarrow {\text{area}} = 14\)     M1A1

Note: If answer to part (f) is found in an earlier part, award M1A1, regardless of the fact that it has not come from their answers to part (c) and part (e).

 

[2 marks]

Total [20 marks]

 

Question

Two planes \({\Pi _1}\) and \({\Pi _2}\) have equations \(2x + y + z = 1\) and \(3x + y – z = 2\) respectively.

a.Find the vector equation of L, the line of intersection of \({\Pi _1}\) and \({\Pi _2}\).[6]

 

b.Show that the plane \({\Pi _3}\) which is perpendicular to \({\Pi _1}\) and contains L, has equation \(x – 2z = 1\).[4]

 

c.The point P has coordinates (−2, 4, 1) , the point Q lies on \({\Pi _3}\) and PQ is perpendicular to \({\Pi _2}\). Find the coordinates of Q.[6]

 
▶️Answer/Explanation

Markscheme

(a)     METHOD 1

solving simultaneously (gdc)     (M1)

\(x = 1 + 2z;{\text{ }}y = – 1 – 5z\)     A1A1

\(L:\boldsymbol{r} = \left( {\begin{array}{*{20}{c}}
  1 \\
  { – 1} \\
  0
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}
  2 \\
  { – 5} \\
  1
\end{array}} \right)\)     A1A1A1

Note: \({1^{{\text{st}}}}\) A1 is for r =.

 

[6 marks]

METHOD 2

direction of line \( = \left| {\begin{array}{*{20}{c}}
  \boldsymbol{i}&\boldsymbol{j}&\boldsymbol{k} \\
  3&1&{ – 1} \\
  2&1&1
\end{array}} \right|\) (last two rows swapped)     M1

= 2i − 5j + k     A1

putting z = 0, a point on the line satisfies \(2x + y = 1,{\text{ }}3x + y = 2\)     M1

i.e. (1, −1, 0)     A1

the equation of the line is

\(\left( {\begin{array}{*{20}{c}}
  x \\
  y \\
  z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  1 \\
  { – 1} \\
  0
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}
  2 \\
  { – 5} \\
  1
\end{array}} \right)\)     A1A1

Note: Award A0A1 if \(\left( {\begin{array}{*{20}{c}}
  x \\
  y \\
  z
\end{array}} \right)\) is missing.

 

[6 marks]

a.

\(\left( {\begin{array}{*{20}{c}}
  2 \\
  1 \\
  1
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
  2 \\
  { – 5} \\
  1
\end{array}} \right)\)     M1

= 6i − 12k     A1

hence, n = i − 2k

\({\boldsymbol{n}} \cdot {\boldsymbol{a}} = \left( {\begin{array}{*{20}{c}}
  1 \\
  0 \\
  { – 2}
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
  1 \\
  { – 1} \\
  0
\end{array}} \right) = 1\)     M1A1

therefore \( \cdot \) n = \( \cdot \) n \( \Rightarrow x – 2z = 1\)     AG

[4 marks]

b.

METHOD 1

P = (−2, 4, 1), Q = \((x,{\text{ }}y,{\text{ }}z)\)

\(\overrightarrow {{\text{PQ}}}  = \left( {\begin{array}{*{20}{c}}
  {x + 2} \\
  {y – 4} \\
  {z – 1}
\end{array}} \right)\)     A1

\(\overrightarrow {{\text{PQ}}} \) is perpendicular to \(3x + y – z = 2\)

\( \Rightarrow \overrightarrow {{\text{PQ}}} \) is parallel to 3i + jk     R1

\( \Rightarrow x + 2 = 3t;{\text{ }}y – 4 = t;{\text{ }}z – 1 = – t\)     A1

\(1 – z = t \Rightarrow x + 2 = 3 – 3z \Rightarrow x + 3z = 1\)     A1

solving simultaneously \(x + 3z = 1;{\text{ }}x – 2z = 1\)     M1

\(5z = 0 \Rightarrow z = 0;{\text{ }}x = 1,{\text{ }}y = 5\)     A1

hence, Q = (1, 5, 0)

[6 marks]

 

METHOD 2

Line passing through PQ has equation

\({\mathbf{r}} = \begin{array}{*{20}{c}}
  { – 2} \\
  4 \\
  1
\end{array} + t\begin{array}{*{20}{c}}
  3 \\
  1 \\
  { – 1}
\end{array}\)     M1A1

Meets \({\pi _3}\) when:

\( – 2 + 3t – 2(1 – t) = 1\)     M1A1

t = 1     A1

Q has coordinates (1, 5, 0)     A1

[6 marks]

c.
Scroll to Top