IBDP Maths SL 5.4 Tangents and normal at a given point, and their equations AA HL Paper 1- Exam Style Questions- New Syllabus
Consider the function \(f(x) = \frac{\ln x}{x}\), \(x > 0\).
The sketch below shows the graph of \(y = f(x)\) and its tangent at a point A.

a. Show that \(f'(x) = \frac{1 – \ln x}{x^2}\). [2]
b. Find the coordinates of B, at which the curve reaches its maximum value. [3]
c. Find the coordinates of C, the point of inflexion on the curve. [5]
d. The graph of \(y = f(x)\) crosses the x-axis at the point A.
Find the equation of the tangent to the graph of \(f\) at the point A. [4]
e. The graph of \(y = f(x)\) crosses the x-axis at the point A.
Find the area enclosed by the curve \(y = f(x)\), the tangent at A, and the line \(x = e\). [7]
▶️ Answer/Explanation
Using the quotient rule:
\[ f'(x) = \frac{x \cdot \frac{1}{x} – \ln x \cdot 1}{x^2} = \frac{1 – \ln x}{x^2} \]
\(\boxed{f'(x) = \frac{1 – \ln x}{x^2}}\)
Set \(f'(x) = 0\):
\[ \frac{1 – \ln x}{x^2} = 0 \Rightarrow 1 – \ln x = 0 \Rightarrow \ln x = 1 \Rightarrow x = e \]
Find \(y\)-coordinate:
\[ f(e) = \frac{\ln e}{e} = \frac{1}{e} \]
Maximum at point B:
\(\boxed{\left(e, \frac{1}{e}\right)}\)
Find second derivative:
\[ f”(x) = \frac{x^2(-\frac{1}{x}) – (1 – \ln x)(2x)}{x^4} = \frac{-x – 2x + 2x\ln x}{x^4} = \frac{2\ln x – 3}{x^3} \]
Set \(f”(x) = 0\):
\[ 2\ln x – 3 = 0 \Rightarrow \ln x = \frac{3}{2} \Rightarrow x = e^{3/2} \]
Find \(y\)-coordinate:
\[ f(e^{3/2}) = \frac{3/2}{e^{3/2}} = \frac{3}{2}e^{-3/2} \]
Point of inflexion C:
\(\boxed{\left(e^{3/2}, \frac{3}{2}e^{-3/2}\right)}\)
Find point A where \(f(x) = 0\):
\[ \frac{\ln x}{x} = 0 \Rightarrow \ln x = 0 \Rightarrow x = 1 \]
Point A is \((1, 0)\).
Slope at A:
\[ f'(1) = \frac{1 – \ln 1}{1} = 1 \]
Tangent equation:
\[ y – 0 = 1(x – 1) \Rightarrow y = x – 1 \]
\(\boxed{y = x – 1}\)
Area between \(x = 1\) and \(x = e\):
\[ \text{Area} = \int_1^e \left[(x – 1) – \frac{\ln x}{x}\right] dx \]
Calculate integrals separately:
\[ \int (x – 1) dx = \frac{x^2}{2} – x \]
\[ \int \frac{\ln x}{x} dx = \frac{(\ln x)^2}{2} \]
Evaluate from 1 to e:
\[ \left[\frac{x^2}{2} – x – \frac{(\ln x)^2}{2}\right]_1^e = \left(\frac{e^2}{2} – e – \frac{1}{2}\right) – \left(\frac{1}{2} – 1\right) = \frac{e^2}{2} – e \]
\(\boxed{\frac{e^2}{2} – e}\)