IB DP Math AA Topic SL 5.1 Informal ideas of limit, continuity and convergence HL Paper 2

Question

A curve C is given by the implicit equation \(x + y – {\text{cos}}\left( {xy} \right) = 0\).

The curve \(xy =  – \frac{\pi }{2}\) intersects C at P and Q.

a.Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)\).[5]

b.i.Find the coordinates of P and Q.[4]

b.ii.Given that the gradients of the tangents to C at P and Q are m1 and m2 respectively, show that m1 × m2 = 1.[3]

c.Find the coordinates of the three points on C, nearest the origin, where the tangent is parallel to the line \(y =  – x\).[7]

▶️Answer/Explanation

Markscheme

attempt at implicit differentiation      M1

\(1 + \frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right){\text{sin}}\left( {xy} \right) = 0\)     A1M1A1

Note: Award A1 for first two terms. Award M1 for an attempt at chain rule A1 for last term.

\(\left( {1 + x\,{\text{sin}}\left( {xy} \right)} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – 1 – y\,{\text{sin}}\left( {xy} \right)\)     A1

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)\)     AG

[5 marks]

a.

EITHER

when \(xy =  – \frac{\pi }{2},\,\,{\text{cos}}\,xy = 0\)     M1

\( \Rightarrow x + y = 0\)    (A1)

OR

\(x – \frac{\pi }{{2x}} – {\text{cos}}\left( {\frac{{ – \pi }}{2}} \right) = 0\) or equivalent      M1

\(x – \frac{\pi }{{2x}} = 0\)     (A1)

THEN

therefore \({x^2} = \frac{\pi }{2}\left( {x =  \pm \sqrt {\frac{\pi }{2}} } \right)\left( {x =  \pm 1.25} \right)\)     A1

\({\text{P}}\left( {\sqrt {\frac{\pi }{2}} ,\, – \sqrt {\frac{\pi }{2}} } \right),\,\,{\text{Q}}\left( { – \sqrt {\frac{\pi }{2}} ,\,\sqrt {\frac{\pi }{2}} } \right)\) or \(P\left( {1.25,\, – 1.25} \right),\,Q\left( { – 1.25,\,1.25} \right)\)     A1

[4 marks]

b.i.

m1 = \( – \left( {\frac{{1 – \sqrt {\frac{\pi }{2}}  \times  – 1}}{{1 + \sqrt {\frac{\pi }{2}}  \times  – 1}}} \right)\)     M1A1

m= \( – \left( {\frac{{1 + \sqrt {\frac{\pi }{2}}  \times  – 1}}{{1 – \sqrt {\frac{\pi }{2}}  \times  – 1}}} \right)\)     A1

mm= 1     AG

Note: Award M1A0A0 if decimal approximations are used.
Note: No FT applies.

[3 marks]

b.ii.

equate derivative to −1    M1

\(\left( {y – x} \right){\text{sin}}\left( {xy} \right) = 0\)     (A1)

\(y = x,\,{\text{sin}}\left( {xy} \right) = 0\)     R1

in the first case, attempt to solve \(2x = {\text{cos}}\left( {{x^2}} \right)\)     M1

(0.486,0.486)      A1

in the second case, \({\text{sin}}\left( {xy} \right) = 0 \Rightarrow xy = 0\) and \(x + y = 1\)     (M1)

(0,1), (1,0)      A1

[7 marks]

 

 
 
 
 

Question

The following graph shows the two parts of the curve defined by the equation \({x^2}y = 5 – {y^4}\), and the normal to the curve at the point P(2 , 1).

a.Show that there are exactly two points on the curve where the gradient is zero.[7]

b.Find the equation of the normal to the curve at the point P.[5]

c.The normal at P cuts the curve again at the point Q. Find the \(x\)-coordinate of Q.[3]

d.The shaded region is rotated by 2\(\pi \) about the \(y\)-axis. Find the volume of the solid formed.[7]

▶️Answer/Explanation

Markscheme

differentiating implicitly:       M1

\(2xy + {x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – 4{y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     A1A1

Note: Award A1 for each side.

if \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) then either \(x = 0\) or \(y = 0\)       M1A1

\(x = 0 \Rightarrow \) two solutions for \(y\left( {y =  \pm \sqrt[4]{5}} \right)\)      R1

\(y = 0\) not possible (as 0 ≠ 5)     R1

hence exactly two points      AG

Note: For a solution that only refers to the graph giving two solutions at  \(x = 0\) and no solutions for \(y = 0\) award R1 only.

[7 marks]

a.

at (2, 1)  \(4 + 4\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – 4\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \frac{1}{2}\)     (A1)

gradient of normal is 2       M1

1 = 4 + c       (M1)

equation of normal is \(y = 2x – 3\)     A1

[5 marks]

b.

substituting      (M1)

\({x^2}\left( {2x – 3} \right) = 5 – {\left( {2x – 3} \right)^4}\) or \({\left( {\frac{{y + 3}}{2}} \right)^2}\,y = 5 – {y^4}\)       (A1)

\(x = 0.724\)      A1

[3 marks]

c.

recognition of two volumes      (M1)

volume \(1 = \pi \int_1^{\sqrt[4]{5}} {\frac{{5 – {y^4}}}{y}} {\text{d}}y\left( { = 101\pi  = 3.178 \ldots } \right)\)      M1A1A1

Note: Award M1 for attempt to use \(\pi \int {{x^2}} {\text{d}}y\), A1 for limits, A1 for \({\frac{{5 – {y^4}}}{y}}\) Condone omission of \(\pi \) at this stage.

volume 2

EITHER

\( = \frac{1}{3}\pi  \times {2^2} \times 4\left( { = 16.75 \ldots } \right)\)     (M1)(A1)

OR

\( = \pi \int_{ – 3}^1 {{{\left( {\frac{{y + 3}}{2}} \right)}^2}} {\text{d}}y\left( { = \frac{{16\pi }}{3} = 16.75 \ldots } \right)\)     (M1)(A1)

THEN

total volume = 19.9      A1

[7 marks]

 

 
 
 
 

Question

The curve \(C\) is defined by equation \(xy – \ln y = 1,{\text{ }}y > 0\).

a.Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of \(x\) and \(y\).[4]

b.Determine the equation of the tangent to \(C\) at the point \(\left( {\frac{2}{{\text{e}}},{\text{ e}}} \right)\)[3]

▶️Answer/Explanation

Markscheme

\(y + x\frac{{{\text{d}}y}}{{{\text{d}}x}} – \frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     M1A1A1

Note:     Award A1 for the first two terms, A1 for the third term and the 0.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{y^2}}}{{1 – xy}}\)     A1

Note:     Accept \(\frac{{ – {y^2}}}{{\ln y}}\).

Note:     Accept \(\frac{{ – y}}{{x – \frac{1}{y}}}\).

[4 marks]

a.

\({m_T} = \frac{{{{\text{e}}^2}}}{{1 – {\text{e}} \times \frac{2}{{\text{e}}}}}\)     (M1)

\({m_T} = – {{\text{e}}^2}\)     (A1)

\(y – {\text{e}} = – {{\text{e}}^2}x + 2{\text{e}}\)

\( – {{\text{e}}^2}x – y + 3{\text{e}} = 0\) or equivalent     A1

Note:     Accept \(y = – 7.39x + 8.15\).

[3 marks]

Question

Consider the curve with equation \({x^3} + {y^3} = 4xy\).

The tangent to this curve is parallel to the \(x\)-axis at the point where \(x = k,{\text{ }}k > 0\).

a.Use implicit differentiation to show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{4y – 3{x^2}}}{{3{y^2} – 4x}}\).[3]

b.Find the value of \(k\).[5]

▶️Answer/Explanation

Markscheme

\(3{x^2} + 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4\left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\)    M1A1

\((3{y^2} – 4x)\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4y – 3{x^2}\)    A1

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{4y – 3{x^2}}}{{3{y^2} – 4x}}\)    AG

[3 marks]

a.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow 4y – 3{x^2} = 0\)    (M1)

substituting \(x = k\) and \(y = \frac{3}{4}{k^2}\) into \({x^3} + {y^3} = 4xy\)     M1

\({k^3} + \frac{{27}}{{64}}{k^6} = 3{k^3}\)    A1

attempting to solve \({k^3} + \frac{{27}}{{64}}{k^6} = 3{k^3}\) for \(k\)     (M1)

\(k = 1.68{\text{ }}\left( { = \frac{4}{3}\sqrt[3]{2}} \right)\)    A1

Note:     Condone substituting \(y = \frac{3}{4}{x^2}\) into \({x^3} + {y^3} = 4xy\) and solving for \(x\).

[5 marks]

b.

Examiners report

Part (a) was generally well done. Some use of partial differentiation accompanied by rudimentary partial derivative notation was observed in a few candidate’s solutions.

a.

In part (b), a large number of candidates knew to use \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) and seemingly understood the required solution plan but were unable to correctly substitute \(x = k\) and \(y = \frac{{3{k^2}}}{4}\) into the relation and solve for \(k\).

b.

Question

Consider the curve, \(C\) defined by the equation \({y^2} – 2xy = 5 – {{\text{e}}^x}\). The point A lies on \(C\) and has coordinates \((0,{\text{ }}a),{\text{ }}a > 0\).

a.Find the value of \(a\).[2]

b.Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2y – {{\text{e}}^x}}}{{2(y – x)}}\).[4]

c.Find the equation of the normal to \(C\) at the point A.[3]

d.Find the coordinates of the second point at which the normal found in part (c) intersects \(C\).[4]

e.Given that \(v = {y^3},{\text{ }}y > 0\), find \(\frac{{{\text{d}}v}}{{{\text{d}}x}}\) at \(x = 0\).[3]

▶️Answer/Explanation

Markscheme

\({a^2} = 5 – 1\)     (M1)

\(a = 2\)     A1

[2 marks]

a.

\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} – \left( {2x\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2y} \right) =  – {{\text{e}}^x}\)     M1A1A1A1

Note:     Award M1 for an attempt at implicit differentiation, A1 for each part.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2y – {{\text{e}}^x}}}{{2(y – x)}}\)     AG

[4 marks]

b.

at \(x = 0,{\text{ }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{3}{4}\)     (A1)

finding the negative reciprocal of a number     (M1)

gradient of normal is \( – \frac{4}{3}\)

\(y =  – \frac{4}{3}x + 2\)     A1

[3 marks]

c.

substituting linear expression     (M1)

\({\left( { – \frac{4}{3}x + 2} \right)^2} – 2x\left( { – \frac{4}{3}x + 2} \right) + {{\text{e}}^x} – 5 = 0\) or equivalent

\(x = 1.56\)     (M1)A1

\(y =  – 0.0779\)     A1

\((1.56,{\text{ }} – 0.0779)\)

[4 marks]

d.

\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)    M1A1

\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = 3 \times 4 \times \frac{3}{4} = 9\)    A1

[3 marks]

 

 
 
 
 

Question

Consider the curve, \(C\) defined by the equation \({y^2} – 2xy = 5 – {{\text{e}}^x}\). The point A lies on \(C\) and has coordinates \((0,{\text{ }}a),{\text{ }}a > 0\).

a.Find the value of \(a\).[2]

b.Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2y – {{\text{e}}^x}}}{{2(y – x)}}\).[4]

c.Find the equation of the normal to \(C\) at the point A.[3]

d.Find the coordinates of the second point at which the normal found in part (c) intersects \(C\).[4]

e.Given that \(v = {y^3},{\text{ }}y > 0\), find \(\frac{{{\text{d}}v}}{{{\text{d}}x}}\) at \(x = 0\).[3]

▶️Answer/Explanation

Markscheme

\({a^2} = 5 – 1\)     (M1)

\(a = 2\)     A1

[2 marks]

a.

\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} – \left( {2x\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2y} \right) =  – {{\text{e}}^x}\)     M1A1A1A1

Note:     Award M1 for an attempt at implicit differentiation, A1 for each part.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2y – {{\text{e}}^x}}}{{2(y – x)}}\)     AG

[4 marks]

b.

at \(x = 0,{\text{ }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{3}{4}\)     (A1)

finding the negative reciprocal of a number     (M1)

gradient of normal is \( – \frac{4}{3}\)

\(y =  – \frac{4}{3}x + 2\)     A1

[3 marks]

c.

substituting linear expression     (M1)

\({\left( { – \frac{4}{3}x + 2} \right)^2} – 2x\left( { – \frac{4}{3}x + 2} \right) + {{\text{e}}^x} – 5 = 0\) or equivalent

\(x = 1.56\)     (M1)A1

\(y =  – 0.0779\)     A1

\((1.56,{\text{ }} – 0.0779)\)

[4 marks]

d.

\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)    M1A1

\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = 3 \times 4 \times \frac{3}{4} = 9\)    A1

[3 marks]

 
 
 
 

Question

A particle moves in a straight line, its velocity \(v{\text{ m}}{{\text{s}}^{ – 1}}\) at time \(t\) seconds is given by \(v = 9t – 3{t^2},{\text{ }}0 \le t \le 5\).

At time \(t = 0\), the displacement \(s\) of the particle from an origin \(O\) is 3 m.

a.Find the displacement of the particle when \(t = 4\).[3]

b.Sketch a displacement/time graph for the particle, \(0 \le t \le 5\), showing clearly where the curve meets the axes and the coordinates of the points where the displacement takes greatest and least values.[5]

c.For \(t > 5\), the displacement of the particle is given by \(s = a + b\cos \frac{{2\pi t}}{5}\) such that \(s\) is continuous for all \(t \ge 0\).

Given further that \(s = 16.5\) when \(t = 7.5\), find the values of \(a\) and \(b\).[3]

d.For \(t > 5\), the displacement of the particle is given by \(s = a + b\cos \frac{{2\pi t}}{5}\) such that \(s\) is continuous for all \(t \ge 0\).

Find the times \({t_1}\) and \({t_2}(0 < {t_1} < {t_2} < 8)\) when the particle returns to its starting point.[4]

▶️Answer/Explanation

Markscheme

METHOD 1

\(s = \int {(9t – 3{t^2}){\text{d}}t = \frac{9}{2}{t^2} – {t^3}( + c)} \)     (M1)

\(t = 0,{\text{ }}s = 3 \Rightarrow c = 3\)     (A1)

\(t = 4 \Rightarrow s = 11\)     A1

METHOD 2

\(s = 3 + \int_0^4 {(9t – 3{t^2}){\text{d}}t} \)     (M1)(A1)

\(s = 11\)     A1

[3 marks]

a.

correct shape over correct domain     A1

maximum at \((3,{\text{ }}16.5)\)     A1

\(t\) intercept at \(4.64\), \(s\) intercept at \(3\)     A1

minimum at \((5,{\text{ }} – 9.5)\)     A1

[5 marks]

b.

\( – 9.5 = a + b\cos 2\pi \)

\(16.5 = a + b\cos 3\pi \)     (M1)

Note:     Only award M1 if two simultaneous equations are formed over the correct domain.

 \(a = \frac{7}{2}\)     A1

\(b =  – 13\)     A1

[3 marks]

c.

at \({t_1}\):

\(3 + \frac{9}{2}{t^2} – {t^3} = 3\)     (M1)

\({t^2}\left( {\frac{9}{2} – t} \right) = 0\)

\({t_1} = \frac{9}{2}\)     A1

solving \(\frac{7}{2} – 13\cos \frac{{2\pi t}}{5} = 3\)     (M1)

\({\text{GDC}} \Rightarrow {t_2} = 6.22\)     A1

Note:     Accept graphical approaches.

[4 marks]

Total [15 marks]

 

 
 
 
 
Scroll to Top