IB DP Math AA-Topic: SL 5.3 Derivative of f(x): IB Style Question SL Paper 1

Question

Let y = \(\frac{Inx}{x^{4}}\) for x > 0.

(a)        Show that \(\frac{dy}{dx}= \frac{1-4Inx}{x^{5}}\)

Consider the function defined  by f (x) \(\frac{Inx}{x^{4}}\) =  for x> 0 and its graph y = f (x) .

(b)        The graph of has a horizontal tangent at point P. Find the coordinates of P.                                                      [5]

(c)        Given that f ” (x) = \(\frac{20Lnx-9}{x^{6}}\) show that P is a local maximum point.                                                [3]

(d)        Solve f (x) > 0 for x > 0.                                                                                                                                                          [2]

(e) Sketch the graph of f , showing clearly the value of the x-intercept and the approximate position of point P.    [3]

Answer/Explanation

Ans

Question

Consider \(f(x) = \frac{1}{3}{x^3} + 2{x^2} – 5x\) . Part of the graph of f is shown below. There is a maximum point at M, and a point of inflexion at N.


Find \(f'(x)\) .[3]

a.

Find the x-coordinate of M.[4]

b.

Find the x-coordinate of N.[3]

c.

The line L is the tangent to the curve of f at \((3{\text{, }}12)\). Find the equation of L in the form \(y = ax + b\) .[4]

d.
Answer/Explanation

Markscheme

\(f'(x) = {x^2} + 4x – 5\)     A1A1A1     N3

[3 marks]

a.

evidence of attempting to solve \(f'(x) = 0\)     (M1)

evidence of correct working     A1

e.g. \((x + 5)(x – 1)\) , \(\frac{{ – 4 \pm \sqrt {16 + 20} }}{2}\) , sketch

\(x = – 5\), \(x = 1\)     (A1)

so \(x = – 5\)     A1     N2

[4 marks]

b.

METHOD 1

\(f”(x) = 2x + 4\) (may be seen later)     A1

evidence of setting second derivative = 0     (M1)

e.g. \(2x + 4 = 0\)

\(x = – 2\)     A1     N2

METHOD 2

evidence of use of symmetry     (M1)

e.g. midpoint of max/min, reference to shape of cubic

correct calculation     A1

e.g. \(\frac{{ – 5 + 1}}{2}\)

\(x = – 2\)     A1     N2

[3 marks]

c.

attempting to find the value of the derivative when \(x = 3\)     (M1)

\(f'(3) = 16\)     A1

valid approach to finding the equation of a line     M1

e.g. \(y – 12 = 16(x – 3)\) , \(12 = 16 \times 3 + b\)

\(y = 16x – 36\)     A1     N2

[4 marks]

d.

Question

Let \(f(x) = 3 + \frac{{20}}{{{x^2} – 4}}\) , for \(x \ne \pm 2\) . The graph of f is given below.


The y-intercept is at the point A.

(i)     Find the coordinates of A.

(ii)    Show that \(f'(x) = 0\) at A.[7]

a.

The second derivative \(f”(x) = \frac{{40(3{x^2} + 4)}}{{{{({x^2} – 4)}^3}}}\) . Use this to

(i)     justify that the graph of f has a local maximum at A;

(ii)    explain why the graph of f does not have a point of inflexion.[6]

b.

Describe the behaviour of the graph of \(f\) for large \(|x|\) .[1]

c.

Write down the range of \(f\) .[2]

d.
Answer/Explanation

Markscheme

(i) coordinates of A are \((0{\text{, }} – 2)\)     A1A1     N2

(ii) derivative of \({x^2} – 4 = 2x\) (seen anywhere)     (A1)

evidence of correct approach     (M1)

e.g. quotient rule, chain rule

finding \(f'(x)\)     A2

e.g. \(f'(x) = 20 \times ( – 1) \times {({x^2} – 4)^{ – 2}} \times (2x)\) , \(\frac{{({x^2} – 4)(0) – (20)(2x)}}{{{{({x^2} – 4)}^2}}}\)

substituting \(x = 0\) into \(f'(x)\) (do not accept solving \(f'(x) = 0\) )     M1

at A \(f'(x) = 0\)     AG     N0

[7 marks]

a.

(i) reference to \(f'(x) = 0\) (seen anywhere)     (R1)

reference to \(f”(0)\) is negative (seen anywhere)     R1

evidence of substituting \(x = 0\) into \(f”(x)\)     M1

finding \(f”(0) = \frac{{40 \times 4}}{{{{( – 4)}^3}}}\) \(\left( { = – \frac{5}{2}} \right)\)     A1

then the graph must have a local maximum     AG

(ii) reference to \(f”(x) = 0\) at point of inflexion     (R1)

recognizing that the second derivative is never 0     A1     N2

e.g. \(40(3{x^2} + 4) \ne 0\) , \(3{x^2} + 4 \ne 0\) , \({x^2} \ne  – \frac{4}{3}\) , the numerator is always positive

Note: Do not accept the use of the first derivative in part (b).

[6 marks]

b.

correct (informal) statement, including reference to approaching \(y = 3\)     A1     N1

e.g. getting closer to the line \(y = 3\) , horizontal asymptote at \(y = 3\)

[1 mark]

c.

correct inequalities, \(y \le – 2\) , \(y > 3\) , FT from (a)(i) and (c)     A1A1     N2

[2 marks]

d.

Question

Let \(f(x) = \frac{1}{2}{x^3} – {x^2} – 3x\) . Part of the graph of f is shown below.


There is a maximum point at A and a minimum point at B(3, − 9) .

Find the coordinates of A.[8]

a.

Write down the coordinates of

(i)     the image of B after reflection in the y-axis;

(ii)    the image of B after translation by the vector \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
5
\end{array}} \right)\) ;

(iii)   the image of B after reflection in the x-axis followed by a horizontal stretch with scale factor \(\frac{1}{2}\) .[6]

b(i), (ii) and (iii).
Answer/Explanation

Markscheme

\(f(x) = {x^2} – 2x – 3\)     A1A1A1

evidence of solving \(f'(x) = 0\)     (M1)

e.g. \({x^2} – 2x – 3 = 0\)

evidence of correct working     A1

e.g. \((x + 1)(x – 3)\) ,  \(\frac{{2 \pm \sqrt {16} }}{2}\)

\(x =  – 1\) (ignore \(x = 3\) )     (A1)

evidence of substituting their negative x-value into \(f(x)\)     (M1)

e.g. \(\frac{1}{3}{( – 1)^3} – {( – 1)^2} – 3( – 1)\) , \( – \frac{1}{3} – 1 + 3\)

\(y = \frac{5}{3}\)     A1

coordinates are \(\left( { – 1,\frac{5}{3}} \right)\)     N3

[8 marks]

a.

(i) \(( – 3{\text{, }} – 9)\)     A1     N1

(ii) \((1{\text{, }} – 4)\)     A1A1    N2

(iii) reflection gives \((3{\text{, }}9)\)     (A1)

stretch gives \(\left( {\frac{3}{2}{\text{, }}9} \right)\)     A1A1     N3

[6 marks]

b(i), (ii) and (iii).

Question

[without GDC]

Given the following values at \(x =1\)

Calculate the derivatives of the following functions at \(x =1\)

(ⅰ)   \(y=2f(x)+3g(x)\)                                (ⅰⅰ)    \(y=f(x)g(x)\)

(ⅰⅰⅰ)   \(y=\frac{f(x)}{g(x)}\)                           (iv)   \(y=2x^{3}+1+5f(x)\)

Answer/Explanation

Ans

(a)   \(\frac{\mathrm{d} y}{\mathrm{d} x}=2f'(x)+3g'(x)\),  at \(x=1\)  the value is \(23\)

(b)   \(\frac{\mathrm{d} y}{\mathrm{d} x}=f'(x)g(x)+f(x)g'(x)\), at \(x=1\) the value is \(22\)

(c)    \(\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}\), at \(x=1\) the value is \(\frac{2}{9}\)

(d)    \(\frac{\mathrm{d} y}{\mathrm{d} x}=6x^{2}+5f'(x)\), at \(x=1\) the value is \(26\)

Scroll to Top