Home / IBDP Maths SL 5.8 Local maximum and minimum values AA HL Paper 1- Exam Style Questions

IBDP Maths SL 5.8 Local maximum and minimum values AA HL Paper 1- Exam Style Questions

IBDP Maths SL 5.8 Local maximum and minimum values AA HL Paper 1- Exam Style Questions- New Syllabus

Question

Consider \(f(x) = \frac{x^2 – 5x + 4}{x^2 + 5x + 4}\).

a. Find the equations of all asymptotes of the graph of \(f\). [4]

b. Find the coordinates of the points where the graph of \(f\) meets the \(x\) and \(y\) axes. [2]

c. Find the coordinates of

(i) the maximum point and justify your answer; [5]

(ii) the minimum point and justify your answer. [5]

d. Sketch the graph of \(f\), clearly showing all the features found above. [3]

e. Hence, write down the number of points of inflection of the graph of \(f\). [1]

▶️ Answer/Explanation
Markscheme
a.

Find vertical asymptotes by setting the denominator to zero:

\(x^2 + 5x + 4 = 0 \implies (x + 1)(x + 4) = 0 \implies x = -1, x = -4\) M1A1

Find horizontal asymptote by examining behavior as \(x \to \pm \infty\):

\(f(x) = \frac{x^2 – 5x + 4}{x^2 + 5x + 4} \approx \frac{x^2}{x^2} = 1\), so \(y = 1\) M1A1

Vertical asymptotes: \(x = -1\), \(x = -4\); horizontal asymptote: \(y = 1\).

[4 marks]

b.

\(x\)-intercepts (set \(f(x) = 0\)): \(x^2 – 5x + 4 = 0 \implies (x – 1)(x – 4) = 0 \implies x = 1, x = 4\)

Points: \((1, 0)\), \((4, 0)\) A1

\(y\)-intercept (set \(x = 0\)): \(f(0) = \frac{0 – 0 + 4}{0 + 0 + 4} = \frac{4}{4} = 1\)

Point: \((0, 1)\) A1

Intercepts: \((1, 0)\), \((4, 0)\), \((0, 1)\).

[2 marks]

c.

(i) Use quotient rule to find \(f'(x)\):

\(f(x) = \frac{x^2 – 5x + 4}{x^2 + 5x + 4}\), let \(u = x^2 – 5x + 4\), \(v = x^2 + 5x + 4\).

\(u’ = 2x – 5\), \(v’ = 2x + 5\)

\(f'(x) = \frac{u’ v – u v’}{v^2} = \frac{(2x – 5)(x^2 + 5x + 4) – (x^2 – 5x + 4)(2x + 5)}{(x^2 + 5x + 4)^2}\) M1A1A1

Numerator: \((2x – 5)(x^2 + 5x + 4) – (x^2 – 5x + 4)(2x + 5) = (2x^3 + 10x^2 + 8x – 5x^2 – 25x – 20) – (2x^3 – 5x^2 + 8x + 5x^2 – 25x + 20) = 10x^2 – 40 = 10(x – 2)(x + 2)\)

\(f'(x) = \frac{10(x – 2)(x + 2)}{(x^2 + 5x + 4)^2}\) A1

Set \(f'(x) = 0\): \(10(x – 2)(x + 2) = 0 \implies x = \pm 2\) M1

Evaluate \(f(x)\) at critical points:

\(f(-2) = \frac{(-2)^2 – 5(-2) + 4}{(-2)^2 + 5(-2) + 4} = \frac{4 + 10 + 4}{4 – 10 + 4} = \frac{18}{-2} = -9\)

\(f(2) = \frac{2^2 – 5 \cdot 2 + 4}{2^2 + 5 \cdot 2 + 4} = \frac{4 – 10 + 4}{4 + 10 + 4} = \frac{-2}{18} = -\frac{1}{9}\)

Points: \((-2, -9)\), \(\left(2, -\frac{1}{9}\right)\) A1A1

Sign test for \(f'(x)\): Numerator is \(10(x – 2)(x + 2)\), denominator is positive except at \(x = -1, -4\).

For \(x < -2\), e.g., \(x = -3\): \((x – 2)(x + 2) = (-3 – 2)(-3 + 2) = 5 > 0\), so \(f'(x) > 0\).

For \(-2 < x < 2\), e.g., \(x = 0\): \((0 – 2)(0 + 2) = -4 < 0\), so \(f'(x) < 0\).

For \(x > 2\), e.g., \(x = 3\): \((3 – 2)(3 + 2) = 5 > 0\), so \(f'(x) > 0\). M1

Since \(f'(x)\) changes from positive to negative at \(x = -2\), \((-2, -9)\) is a maximum. A1

(ii) Since \(f'(x)\) changes from negative to positive at \(x = 2\), \(\left(2, -\frac{1}{9}\right)\) is a minimum. A1

[10 marks]

d.

Sketch includes:

– Vertical asymptotes at \(x = -1\), \(x = -4\)

– Horizontal asymptote at \(y = 1\)

– Intercepts: \((1, 0)\), \((4, 0)\), \((0, 1)\)

– Maximum at \((-2, -9)\), minimum at \(\left(2, -\frac{1}{9}\right)\)

– Three branches: \(x < -4\), \(-4 < x < -1\), \(x > -1\), consistent with asymptotic behavior and critical points. A3

Note: Award A1 for each branch consistent with features.

[3 marks]

e.

From the sketch, the graph has one point of inflection, occurring between the maximum at \(x = -2\) and minimum at \(x = 2\), where concavity changes. A1

[1 mark]

Total [20 marks]

Question

If \(f(x) = x – 3x^{\frac{2}{3}}\), \(x > 0\):

a. Find the \(x\)-coordinate of the point P where \(f'(x) = 0\). [2]

b. Determine whether P is a maximum or minimum point. [3]

▶️ Answer/Explanation
Markscheme
a.

Find \(f'(x)\):

\(f(x) = x – 3x^{\frac{2}{3}}\)

\(f'(x) = 1 – 3 \cdot \frac{2}{3} x^{\frac{2}{3} – 1} = 1 – 2 x^{-\frac{1}{3}} = 1 – \frac{2}{x^{\frac{1}{3}}}\) A1

Set \(f'(x) = 0\):

\(1 – \frac{2}{x^{\frac{1}{3}}} = 0 \implies \frac{2}{x^{\frac{1}{3}}} = 1 \implies x^{\frac{1}{3}} = 2 \implies x = 2^3 = 8\) A1

The \(x\)-coordinate of point P is \(x = 8\).

[2 marks]

b.

Find \(f”(x)\):

\(f'(x) = 1 – 2 x^{-\frac{1}{3}}\)

\(f”(x) = -2 \cdot \left(-\frac{1}{3}\right) x^{-\frac{1}{3} – 1} = \frac{2}{3} x^{-\frac{4}{3}} = \frac{2}{3 x^{\frac{4}{3}}}\) A1

Evaluate at \(x = 8\):

\(f”(8) = \frac{2}{3 \cdot 8^{\frac{4}{3}}} = \frac{2}{3 \cdot (2^3)^{\frac{4}{3}}} = \frac{2}{3 \cdot 2^4} = \frac{2}{3 \cdot 16} = \frac{2}{48} = \frac{1}{24} > 0\) M1

Since \(f”(8) > 0\), the point at \(x = 8\) is a local minimum. A1

[3 marks]

Question

The function \(f\) is defined by \(f(x) = x e^{2x}\).

It can be shown that \(f^{(n)}(x) = (2^n x + n 2^{n-1}) e^{2x}\) for all \(n \in \mathbb{Z}^+\), where \(f^{(n)}(x)\) represents the \(n^{\text{th}}\) derivative of \(f(x)\).

a. By considering \(f^{(n)}(x)\) for \(n = 1\) and \(n = 2\), show that there is one minimum point P on the graph of \(f\), and find the coordinates of P. [7]

b. Show that \(f\) has a point of inflection Q at \(x = -1\). [5]

c. Determine the intervals on the domain of \(f\) where \(f\) is

(i) concave up; [1]

(ii) concave down. [1]

d. Sketch \(f\), clearly showing any intercepts, asymptotes, and the points P and Q. [4]

e. Use mathematical induction to prove that \(f^{(n)}(x) = (2^n x + n 2^{n-1}) e^{2x}\) for all \(n \in \mathbb{Z}^+\), where \(f^{(n)}\) represents the \(n^{\text{th}}\) derivative of \(f(x)\). [9]

▶️ Answer/Explanation
Markscheme
a.

Using the given formula for the \(n^{\text{th}}\) derivative, \(f^{(n)}(x) = (2^n x + n 2^{n-1}) e^{2x}\):

For \(n = 1\): \(f'(x) = (2^1 x + 1 \cdot 2^{1-1}) e^{2x} = (2x + 1) e^{2x}\) A1

Set \(f'(x) = 0\) to find critical points: \((2x + 1) e^{2x} = 0\) M1

Since \(e^{2x} \neq 0\), \(2x + 1 = 0 \implies x = -\frac{1}{2}\) A1

For \(n = 2\): \(f”(x) = (2^2 x + 2 \cdot 2^{2-1}) e^{2x} = (4x + 4) e^{2x}\) A1

Evaluate at \(x = -\frac{1}{2}\): \(f”\left(-\frac{1}{2}\right) = \left(4 \cdot \left(-\frac{1}{2}\right) + 4\right) e^{2 \cdot (-\frac{1}{2})} = (4 \cdot (-\frac{1}{2}) + 4) e^{-1} = (-2 + 4) \cdot \frac{1}{e} = \frac{2}{e} > 0\) A1

Since \(f”\left(-\frac{1}{2}\right) > 0\), the point at \(x = -\frac{1}{2}\) is a local minimum. R1

Find coordinates of P: \(f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right) e^{2 \cdot (-\frac{1}{2})} = -\frac{1}{2} e^{-1} = -\frac{1}{2e}\)

Thus, P is \(\left(-\frac{1}{2}, -\frac{1}{2e}\right)\) A1

[7 marks]

b.

A point of inflection occurs where \(f”(x) = 0\) and the concavity changes.

From part (a), \(f”(x) = (4x + 4) e^{2x}\). Set \(f”(x) = 0\):

\((4x + 4) e^{2x} = 0 \implies 4x + 4 = 0 \implies x = -1\) (since \(e^{2x} \neq 0\)) M1A1

Check concavity change using \(f”(x)\):

At \(x = -\frac{1}{2}\): \(f”\left(-\frac{1}{2}\right) = \frac{2}{e} > 0\) (concave up)

At \(x = -2\): \(f”(-2) = (4 \cdot (-2) + 4) e^{2 \cdot (-2)} = (-8 + 4) e^{-4} = -\frac{4}{e^4} < 0\) (concave down) M1A1

The sign change of \(f”(x)\) around \(x = -1\) indicates a point of inflection at \(x = -1\). R1

[5 marks]

c.

Concavity is determined by the sign of \(f”(x) = (4x + 4) e^{2x}\). Since \(e^{2x} > 0\), the sign depends on \(4x + 4\).

(i) Concave up when \(f”(x) > 0\): \(4x + 4 > 0 \implies x > -1\) A1

(ii) Concave down when \(f”(x) < 0\): \(4x + 4 < 0 \implies x < -1\) A1

[2 marks]

d.

Key features for the sketch:

– Intercepts: At \(x = 0\), \(f(0) = 0 \cdot e^0 = 0\), so \((0, 0)\) A1

– Asymptote: As \(x \to -\infty\), \(e^{2x} \to 0\), so \(f(x) \to 0\), giving a horizontal asymptote at \(y = 0\). As \(x \to \infty\), \(f(x) \to \infty\) A1

– Points: P at \(\left(-\frac{1}{2}, -\frac{1}{2e}\right)\) (minimum), Q at \((-1, f(-1)) = (-1, -e^{-2}) = (-1, -\frac{1}{e^2})\) (inflection) A1

– Shape: Concave down for \(x < -1\), concave up for \(x > -1\), minimum at P, inflection at Q A1

[4 marks]

e.

Prove by mathematical induction that \(f^{(n)}(x) = (2^n x + n 2^{n-1}) e^{2x}\) for all \(n \in \mathbb{Z}^+\).

Base case (\(n = 1\)):

\(f(x) = x e^{2x}\), \(f'(x) = e^{2x} + x \cdot 2 e^{2x} = e^{2x} (1 + 2x) = (2x + 1) e^{2x}\)

For \(n = 1\): \(f^{(1)}(x) = (2^1 x + 1 \cdot 2^{1-1}) e^{2x} = (2x + 1) e^{2x}\), which holds. M1A1

Inductive step: Assume true for \(n = k\): \(f^{(k)}(x) = (2^k x + k 2^{k-1}) e^{2x}\). M1A1

Show for \(n = k+1\): Compute \(f^{(k+1)}(x) = \frac{d}{dx} \left( f^{(k)}(x) \right)\):

\(f^{(k)}(x) = (2^k x + k 2^{k-1}) e^{2x}\)

\(\frac{d}{dx} \left( (2^k x + k 2^{k-1}) e^{2x} \right) = 2^k e^{2x} + (2^k x + k 2^{k-1}) \cdot 2 e^{2x}\)

\(= e^{2x} (2^k + 2 (2^k x + k 2^{k-1})) = e^{2x} (2^k + 2^{k+1} x + k 2^k)\)

\(= e^{2x} (2^{k+1} x + 2^k + k 2^k) = e^{2x} (2^{k+1} x + (k+1) 2^k)\) A1A1

This matches the form for \(n = k+1\). Since true for \(n = 1\) and assuming true for \(n = k\) implies true for \(n = k+1\), the result holds for all \(n \in \mathbb{Z}^+\) by induction. R1

[9 marks]

Total [27 marks]

Scroll to Top