IBDP Maths SL 5.5 Introduction to integration as anti differentiation of functions AA HL Paper 1- Exam Style Questions- New Syllabus
A rocket moving in a straight line has velocity \(v\) km s⁻¹ and displacement \(s\) km at time \(t\) seconds. The velocity \(v\) is given by \(v(t) = 6e^{2t} + t\). When \(t = 0\), \(s = 10\).
Find an expression for the displacement of the rocket in terms of \(t\).
▶️ Answer/Explanation
Integrate the velocity function:
\(s(t) = \int (6e^{2t} + t) \, dt = 3e^{2t} + \frac{t^2}{2} + C\) (M1A2A1)
Substitute initial condition \(t=0\), \(s=10\):
\(10 = 3e^{0} + 0 + C \Rightarrow C = 7\) (M1A1)
\(\boxed{s(t) = 3e^{2t} + \frac{t^2}{2} + 7}\) (A1 N6)
The following diagram shows the graph of a function \(f\). There is a local minimum point at \(A\), where \(x > 0\).
The derivative of \(f\) is given by \(f'(x) = 3x^2 – 8x – 3\).
a. Find the \(x\)-coordinate of \(A\). [5]
b. The \(y\)-intercept of the graph is at \((0,6)\). Find an expression for \(f(x)\).
The graph of a function \(g\) is obtained by reflecting the graph of \(f\) in the \(y\)-axis, followed by a translation of \(\left(\begin{array}{c}m\\ n\end{array}\right)\). [6]
c. Find the \(x\)-coordinate of the local minimum point on the graph of \(g\). [3]
▶️ Answer/Explanation
Set \(f'(x) = 0\): \(3x^2 – 8x – 3 = 0\) (M1)
Solve: \((3x + 1)(x – 3) = 0\) (M1A1)
Solutions: \(x = -\frac{1}{3}\) or \(x = 3\)
Since \(x > 0\): \(\boxed{x = 3}\) (A2 N3)
Integrate \(f'(x)\): \(\int (3x^2 – 8x – 3)dx = x^3 – 4x^2 – 3x + C\) (M1A1A1)
Using \((0,6)\): \(6 = 0 – 0 – 0 + C \Rightarrow C = 6\) (A1)
\(\boxed{f(x) = x^3 – 4x^2 – 3x + 6}\) (A1 N6)
Reflect \(f\): \(g(x) = f(-x + m) + n\) (A1)
Minimum was at \(x=3\), now at \(x=-3\) after reflection (M1)
After translation: \(\boxed{x = -3 + m}\) (A1 N3)
—Markscheme—
a. [5 marks]
Setting derivative to zero (M1)
Solving quadratic (M1A1)
Correct solution (A2)
b. [6 marks]
Correct integration (3 marks) (M1A1A1)
Finding constant (A1)
Final answer (A1 N6)
c. [3 marks]
Reflection (A1)
Understanding transformation (M1)
Final coordinate (A1 N3)
Total [14 marks]
a. Calculate \(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\sec }^2}x}}{{\sqrt[3]{{\tan x}}}}{\text{d}}x} \). [6]
b. Find \(\int {{{\tan }^3}x{\text{d}}x} \). [3]
▶️ Answer/Explanation
EITHER
Let \(u = \tan x;{\text{ d}}u = {\sec ^2}x{\text{d}}x\) (M1)
Consideration of change of limits (M1)
\(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\sec }^2}x}}{{\sqrt[3]{{\tan x}}}}{\text{d}}x} = \int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{1}{{{u^{\frac{1}{3}}}}}{\text{d}}u} \) (A1)
Note: Do not penalize lack of limits.
\( = \left[ {\frac{{3{u^{\frac{2}{3}}}}}{2}} \right]_1^{\sqrt 3 }\) A1
\( = \frac{{3 \times {{\sqrt 3 }^{\frac{2}{3}}}}}{2} – \frac{3}{2} = \left( {\frac{{3\sqrt[3]{3} – 3}}{2}} \right)\) A1A1 N0
OR
\(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\sec }^2}x}}{{\sqrt[3]{{\tan x}}}}{\text{d}}x} = \left[ {\frac{{3{{(\tan x)}^{\frac{2}{3}}}}}{2}} \right]_{\frac{\pi }{4}}^{\frac{\pi }{3}}\) M2A2
\( = \frac{{3 \times {{\sqrt 3 }^{\frac{2}{3}}}}}{2} – \frac{3}{2} = \left( {\frac{{3\sqrt[3]{3} – 3}}{2}} \right)\) A1A1 N0
\(\boxed{\frac{3\sqrt[3]{3} – 3}{2}}\)
\(\int {{{\tan }^3}x{\text{d}}x} = \int {\tan x({{\sec }^2}x – 1){\text{d}}x} \) M1
\( = \int {(\tan x \times {{\sec }^2}x – \tan x){\text{d}}x} \)
\( = \frac{1}{2}{\tan ^2}x – \ln \left| {\sec x} \right| + C\) A1A1
Note: Do not penalize the absence of absolute value or C.
\(\boxed{\frac{1}{2}\tan^2x – \ln|\sec x| + C}\)